Skip to main content
Log in

The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either ℝ or sl(2, ℝ) or so(3) are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to n + 1, where n is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For ℝ-Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf theorem for flat connections) saying that the index sum is independent of the choice of a connection. Multiplying this index sum by the orientation class of M, we get the Euler class of this Lie algebroid. Some integral formulae for indices are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Atiyah: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85 (1957), 181–207.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. Balcerzak, J. Kubarski, and Walas: Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid. In: Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publications, Volume 54. Institute of Mathematics, Polish Academy of Science, Warszawa, 2001, pp. 135–173.

    Google Scholar 

  3. A. Coste, P. Dazord, and A. Weinstein: Groupoides Symplectiques. Publ. Dep. Math. Université de Lyon 1, 2/A, 1987.

  4. P. Dazord, D. Sondaz: Varietes de Poisson—Algebroides de Lie. Publ. Dep. Math. Université de Lyon 1, 1/B, 1988.

  5. S. Evens, J.-H. Lu, A. Weinstein: Transverse measures, the modular class, and a cohomology pairing for Lie algebroids. Quarterly J. Math. (1999), 17–434.

  6. J. Grabowski: Lie algebroids and Poisson-Nijenhuis structures. Reports on Mathematics Physics, Vol. 40 (1997).

  7. J. Grabowski, P. Urbański: Algebroids—general differential calculi on vector bundles. J. Geom. Phys. 31 (1999), 111–141.

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Greub, S. Halperin, and R. Vanstone: Connections, Curvature, and Cohomology. Pure and Aplied Mathematics 47, 47-II, 47-III. Academic Press, New York-London, 1971, 1973, 1976.

    MATH  Google Scholar 

  9. J. C. Herz: Pseudo-algèbres de Lie I, II. C. R. Acad. Sci. Paris 263 (1953), 1935–1937, 2289–2291.

    MathSciNet  Google Scholar 

  10. Y. Kosmann-Schwarzbach: Exact Gerstenhaber Algebras and Lie Bialgebroids. Acta Applicandae Mathematicae 41 (1995), 153–165.

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Kosmann-Schwarzbach: The Lie Bialgebroid of a Poisson-Nijenhuis Manifold. Letters Mathematical Physics 38 (1996), 421–428.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Kobayashi, K. Nomizu: Foundations of Differential Geometry, Vol. I. Interscience Publishers, New York-London, 1963.

    Google Scholar 

  13. J. Kubarski: Pradines-type groupoids over foliations; cohomology, connections and the Chern-Weil homomorphism. Preprint Nr 2. Institute of Mathematics, Technical University of Łódź, August 1986.

  14. J. Kubarski: Lie Algebroid of a Principal Fibre Bundle. Publ. Dep. Math. University de Lyon 1, 1/A, 1989.

  15. J. Kubarski: The Chern-Weil homomorphism of regular Lie algebroids. Publ. Dep. Math. University de Lyon 1, 1991.

  16. J. Kubarski: A criterion for the minimal closedness of the Lie subalgebra corresponding to a connected nonclosed Lie subgroup. Rev. Math. Complut. 4 (1991), 159–176.

    MATH  MathSciNet  Google Scholar 

  17. J. Kubarski: Invariant cohomology of regular Lie algebroids. Proceedings of the VIIth International Colloquium on Differential Geometry, Spain, July 26–30, 1994. World Scientific, Singapure, 1995, pp. 137–151.

    Google Scholar 

  18. J. Kubarski: Bott’s Vanishing Theorem for Regular Lie Algebroids. Transaction of the A.M.S. Vol. 348, June 1996.

  19. J. Kubarski: Fibre integral in regular Lie algebroids. In: New Developments in Differential Geometry, Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27–30, 1996. Kluwer Academic Publishers, 1999, pp. 173–202.

  20. J. Kubarski: Connections in regular Poisson manifolds over ℝ-Lie foliations. In: Banach Center Publications, Vol. 51 “Poisson geometry”. Warszawa, 2000, pp. 141–149.

    MATH  MathSciNet  Google Scholar 

  21. J. Kubarski: Gysin sequence and Euler class of spherical Lie algebroids. In: Publicationes Mathematicae Debrecen, Tomus 59. vol. 3–4, 2001, pp. 245–269.

    MathSciNet  Google Scholar 

  22. J. Kubarski: Weil algebra and secondary characteristic homomorphism of regular Lie algebroids. In: Lie algebroids and related topics in differential geometry, Banach Center Publications, Vol. 51. Inst. of Math. Polish Academy of Sciences, Warszawa, 2001, pp. 135–173.

    Google Scholar 

  23. J. Kubarski: Poincaré duality for transitive unimodular invariantly oriented Lie algebroids. In: Topology and Its Applications, Vol. 121. 2002, pp. 333–355.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Kubarski: The Euler-Poincaré-Hopf theorem for some regular ℝ-Lie algebroids. In: Proceedings of the Ist Colloquium on Lie Theory and Applications. Universidad de Vigo, 2002, pp. 105–112.

  25. A. Kumpera: An introduction to Lie groupoids. Duplicated notes, Núcleo de Estudos e Pesquiese Cientificas, Rio de Janeiro, 1971. (The greater part of these Notes appear as the Appendix of [26]).

  26. A. Kumpera, D. C. Spencer: Lie equations, Vol. I: General theory. Annals of Math. Studies, No. 73. Princeton University Press, Princeton, 1972.

    Google Scholar 

  27. P. Libermann: Pseudogroupes infinitésimaux attachés aux pseudogroupes de Lie. Bull. Soc. Math. France 87 (1959), 409–425.

    MATH  MathSciNet  Google Scholar 

  28. P. Libermann: Sur les prolongements des fibrés principaux et groupoides différentiables banachiques. In: Seminaire de mathématiques superieures—élé 1969, Analyse Globale. Les presses de l’Université de Montréal, Montréal, 1971, pp. 7–108.

    Google Scholar 

  29. K. Mackenzie: Lie Groupoids and Lie Algebroids in Differential Geometry. Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  30. K. Mackenzie: Lie algebroids and Lie pseudoalgebras. Bull. London Math. Soc. 27 (1995), 97–147.

    MATH  MathSciNet  Google Scholar 

  31. P. Molino: Etude des feuilletages transversalement complets et applications. Ann. Sci. Ecole Norm. Sup. 10 (1977), 289–307.

    MATH  MathSciNet  Google Scholar 

  32. P. Molino: Riemannian Foliations. Progress in Mathematics, Vol. 73. Birkhüser-Verlag, Boston-Basel, 1988.

    MATH  Google Scholar 

  33. L. Maxim-Raileanu: Cohomology of Lie algebroids. An. Sti. Univ. “Al. I. Cuza” Iasi. Sect. I a Mat. XXII f2 (1976), 197–199.

    MathSciNet  Google Scholar 

  34. Ngo Van Que: Du prolongement des espaces fibrés et des structures infinitésimales. Ann. Inst. Fourier, Grenoble.

  35. Ngo Van Que: Sur l’espace de prolongement différentiable. J. of. Diff. Geom. 2 (1968), 33–40.

    MATH  Google Scholar 

  36. J. Pradines: Théorie de Lie pour les groupoides differentiables. In: Atti del Convegno Internazionale di Geometria Differenziale, Bologna, September 28–30, 1967. 1970, pp. 233–236.

  37. I. Vaisman: Complementary 2-forms of Poisson Structures. Compositio Mathematica 101 (1996), 55–75.

    MATH  MathSciNet  Google Scholar 

  38. I. Vaisman: The BV-algebra of a Jacobi manifolds. Annales Polonici Mathematici 73 (2000), 275–290 (arXiv:math.DG/9904112).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubarski, J. The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids. Czech Math J 56, 359–376 (2006). https://doi.org/10.1007/s10587-006-0023-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-006-0023-7

Keywords

Navigation