Czechoslovak Mathematical Journal

, Volume 55, Issue 3, pp 665–675 | Cite as

Quasiequational Theories of Flat Algebras

  • J. Jezek
  • M. Maroti
  • R. McKenzie


We prove that finite flat digraph algebras and, more generally, finite compatible flat algebras satisfying a certain condition are finitely q-based (possess a finite basis for their quasiequations). We also exhibit an example of a twelve-element compatible flat algebra that is not finitely q-based.


quasiequation flat algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Lawrence and R. Willard: On finitely based groups and nonfinitely based quasivarieties. J. Algebra 203 (1998), 1–11.CrossRefGoogle Scholar
  2. [2]
    R. McKenzie: The residual bounds of finite algebras. Internat. J. Alg. Comput. 6 (1996), 1–28.CrossRefGoogle Scholar
  3. [3]
    R. McKenzie: The residual bound of a finite algebra is not computable. Internat. J. Alg. Comput. 6 (1996), 29–48.CrossRefGoogle Scholar
  4. [4]
    R. McKenzie: Tarski's finite basis problem is undecidable. Internat. J. Alg. Comput. 6 (1996), 49–104.CrossRefGoogle Scholar
  5. [5]
    R. McKenzie, G. McNulty and W. Taylor: Algebras, Lattices, Varieties, Vol. I. Wadsworth & Brooks/Cole, Monterey, 1987.Google Scholar
  6. [6]
    D. Pigozzi: Finite basis theorems for relatively congruence-distributive quasivarieties. Transactions of the AMS 310 (1988), 499–533.Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2005

Authors and Affiliations

  • J. Jezek
    • 1
  • M. Maroti
    • 2
  • R. McKenzie
    • 2
  1. 1.MFF UKPraha 8Czech Republic
  2. 2.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations