Fusion of medical images using deep belief networks


Image fusion plays a significant role in various computer vision applications. However, designing an efficient image fusion technique is still a challenging task. In this paper, a novel deep belief networks based image fusion framework is proposed to improve the performance of the image fusion process further. We have initially, evaluated the fusion dataset by applying various feature extraction techniques. Thereafter, features selection techniques are applied to select potential features. Finally, the image fusion machine learning model is built by using a deep belief network model. Extensive experiments reveal that the proposed technique outperforms existing image fusion techniques.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

adapted from [43]

Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Ouerghi, H., Mourali, O., Zagrouba, E.: Non-subsampled shearlet transform based MRI and PET brain image fusion using simplified pulse coupled neural network and weight local features in YIQ colour space. IET Image Process. 12(10), 1873–1880 (2018)

    Google Scholar 

  2. 2.

    Lee, S.L., Zare, M.R., Muller, H.: Late fusion of deep learning and handcrafted visual features for biomedical image modality classification. IET Image Process. 13(2), 382–391 (2019)

    Google Scholar 

  3. 3.

    Singh, D., Garg, D., Singh, H.: Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci. J. 65(2), 108–114 (2017)

    Google Scholar 

  4. 4.

    Singh, D., Kumar, V.: Dehazing of remote sensing images using improved restoration model based dark channel prior. Imaging Sci. J. 65(5), 282–292 (2017)

    Google Scholar 

  5. 5.

    Venkatrao, P.H., Damodar, S.S.: Hwfusion: holoentropy and sp-whale optimisation-based fusion model for magnetic resonance imaging multimodal image fusion. IET Image Process. 12(4), 572–581 (2018)

    Google Scholar 

  6. 6.

    Nandal, A., Bhaskar, V.: Fuzzy enhanced image fusion using pixel intensity control. IET Image Process. 12(3), 453–464 (2018)

    Google Scholar 

  7. 7.

    Nair, R.R., Singh, T.: Multi-sensor medical image fusion using pyramid-based DWT: a multi-resolution approach. IET Image Process. 13(9), 1447–1459 (2019)

    Google Scholar 

  8. 8.

    Wang, Y., Li, M., Zhong, G., Li, J., Lu, Y.: Circular trace transform and its PCA-based fusion features for image representation. IET Image Process. 12(10), 1797–1806 (2018)

    Google Scholar 

  9. 9.

    Yelampalli, P.K.R., Nayak, J., Gaidhane, V.H.: Daubechies wavelet-based local feature descriptor for multimodal medical image registration. IET Image Process. 12(10), 1692–1702 (2018)

    Google Scholar 

  10. 10.

    Chang, L., Feng, X., Zhu, X., Zhang, R., He, R., Xu, C.: CT and MRI image fusion based on multiscale decomposition method and hybrid approach. IET Image Process. 13(1), 83–88 (2019)

    Google Scholar 

  11. 11.

    Na, Y., Zhao, L., Yang, Y., Ren, M.: Guided filter-based images fusion algorithm for CT and MRI medical images. IET Image Process. 12(1), 138–148 (2018)

    Google Scholar 

  12. 12.

    Pannu, H.S., Singh, D., Malhi, A.K.: Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring. Neural Comput. Appl. 31(7), 2195–2205 (2017)

    Google Scholar 

  13. 13.

    Singh, D., Kumar, V.: Modified gain intervention filter based dehazing technique. J. Mod. Opt. 64(20), 2165–2178 (2017)

    Google Scholar 

  14. 14.

    Xiang, F., Jian, Z., Liang, P., Xueqiang, G.: Robust image fusion with block sparse representation and online dictionary learning. IET Image Process. 12(3), 345–353 (2018)

    Google Scholar 

  15. 15.

    Singh, S., Anand, R.S., Gupta, D.: Ct and mr image information fusion scheme using a cascaded framework in ripplet and NSST domain. IET Image Process. 12(5), 696–707 (2018)

    Google Scholar 

  16. 16.

    Singh, D., Kumar, V.: Dehazing of remote sensing images using fourth-order partial differential equations based trilateral filter. IET Comput. Vis. 12(2), 208–219 (2017)

    Google Scholar 

  17. 17.

    Singh, D., Kumar, V.: Comprehensive survey on haze removal techniques. Multimed. Tools Appl. 77(8), 9595–9620 (2018)

    Google Scholar 

  18. 18.

    Xing, C., Wang, Z., Ouyang, Q., Dong, C.: Method based on bitonic filtering decomposition and sparse representation for fusion of infrared and visible images. IET Image Process. 12(12), 2300–2310 (2018)

    Google Scholar 

  19. 19.

    Wang, J., Li, X., Zhang, Y., Zhang, X.: Adaptive decomposition method for multi-modal medical image fusion. IET Image Process. 12(8), 1403–1412 (2018)

    Google Scholar 

  20. 20.

    Lewis, J.J., OCallaghan, R.J., Nikolov, S.G., Bull, D.R., Canagarajah, N.: Pixel- and region-based image fusion with complex wavelets, Inf. Fus. 8(2), 119–130, Special Issue on Image Fusion: Advances in the State of the Art (2007)

  21. 21.

    Liu, Y., Chen, X., Wang, Z., Wang, Z.J., Ward, R.K., Wang, X.: Deep learning for pixel-level image fusion: recent advances and future prospects. Inf. Fus. 42, 158–173 (2018)

    Google Scholar 

  22. 22.

    Shahdoosti, H.R., Mehrabi, A.: Multimodal image fusion using sparse representation classification in tetrolet domain. Digital Signal Process. 79, 9–22 (2018)

    MathSciNet  Google Scholar 

  23. 23.

    Zhang, C., Yi, L., Feng, Z., Gao, Z., Jin, X., Yan, D.: Multimodal image fusion with adaptive joint sparsity model. J. Electron. Imaging 28(1), 013043 (2019)

    Google Scholar 

  24. 24.

    Tang, H., Xiao, B., Li, W., Wang, G.: Pixel convolutional neural network for multi-focus image fusion. Inf. Sci. 433–434, 125–141 (2018)

    MathSciNet  Google Scholar 

  25. 25.

    Xia, X., Yao, Y., Yin, L., Wu, S., Li, H., Yang, Z.: Multi-focus image fusion based on probability filtering and region correction. Signal Process. 153, 71–82 (2018)

    Google Scholar 

  26. 26.

    Aslantas, V., Toprak, A.N.: A pixel based multi-focus image fusion method. Opt. Commun. 332, 350–358 (2014)

    Google Scholar 

  27. 27.

    Singh, D., Kumar, V.: A novel dehazing model for remote sensing images. Comput. Electr. Eng. 69, 14–27 (2018)

    Google Scholar 

  28. 28.

    Sreeja, P., Hariharan, S.: An improved feature based image fusion technique for enhancement of liver lesions. Biocybern. Biomed. Eng. 38(3), 611–623 (2018)

    Google Scholar 

  29. 29.

    Huang, M., Shu, H., Ma, Y., Gong, Q.: Content-based image retrieval technology using multi-feature fusion. Optik—Int. J. Light Electron Opt. 126(19), 2144–2148 (2015)

    Google Scholar 

  30. 30.

    Rastghalam, R., Pourghassem, H.: Breast cancer detection using mrf-based probable texture feature and decision-level fusion-based classification using hmm on thermography images. Pattern Recognit. 51, 176–186 (2016)

    Google Scholar 

  31. 31.

    Singh, D., Kumar, V.: Single image defogging by gain gradient image filter. Sci. China Inf. Sci. 62(7), 07910 (2008). https://doi.org/10.1007/s11432-017-9433-4

    MathSciNet  Article  Google Scholar 

  32. 32.

    Singh, D., Kumar, V., Kaur, M.: Single image dehazing using gradient channel prior. Appl. Intell. (2019). https://doi.org/10.1007/s10489-019-01504-6

    Article  Google Scholar 

  33. 33.

    Singh, D., Kumar, V.: Single image haze removal using integrated dark and bright channel prior. Mod. Phys. Lett. B 32(04), 1850051 (2018)

    MathSciNet  Google Scholar 

  34. 34.

    Salakhutdinov, V., Andriy Mnih, R., Hinton, G.: Restricted Bol tzmann machines for collaborative filtering. In: Proceedings of the 24th international conference on Machine learning, pp. 791-798. ACM, New York, NY (2007)

  35. 35.

    Wang, L., Xia, X., Cao, J., Liu, X.: Modeling and predicting remanufacturing time of equipment using deep belief networks. Clust. Comput. 22(Suppl 2), 2677–2688 (2017)

    Google Scholar 

  36. 36.

    Wang, L., Zhang, T., Xu, J., Yu, J., Wang, X., Zhang, H., Zhao, Z.: An approach of improved dynamic deep belief nets modeling for algae bloom prediction. Clust. Comput. (2017). https://doi.org/10.1007/s10586-017-1460-9

    Article  Google Scholar 

  37. 37.

    Nauman, M., Tanveer, T.A., Khan, S., Syed, T.A.: Deep neural architectures for large scale android malware analysis. Clust. Comput. 21(1), 569–588 (2018)

    Google Scholar 

  38. 38.

    Karthik, S., Murthy, K.S.: Deep belief network based approach to recognize handwritten kannada characters using distributed average of gradients. Clust. Comput. 22(Suppl 2), 4673–4681 (2018)

    Google Scholar 

  39. 39.

    Saritha, R.R., Paul, V., Kumar, P.G.: Content based image retrieval using deep learning process. Clust. Comput. 22(Suppl 2), 4187–4200 (2018)

    Google Scholar 

  40. 40.

    Qing, C., Ruan, J., Xu, X., Ren, J., Zabalza, J.: Spatial-spectral classification of hyperspectral images: a deep learning framework with markov random fields based modelling. IET Image Process. 13(2), 235–245 (2019)

    Google Scholar 

  41. 41.

    Alaql, O., Lu, C.: No-reference image quality metric based on multiple deep belief networks. IET Image Process. 13(8), 1321–1327 (2019)

    Google Scholar 

  42. 42.

    Barman, A., Dutta, P.: Influence of shape and texture features on facial expression recognition. IET Image Process. 13(8), 1349–1363 (2019)

    Google Scholar 

  43. 43.

    Qiao, J., Wang, G., Li, W., Li, X.: A deep belief network with plsr for nonlinear system modeling. Neural Netw. 104, 68–79 (2018)

    MATH  Google Scholar 

  44. 44.

    Keyvanrad, M.A., Pezeshki, M., Homayounpour, M.A.: Deep belief networks for image denoising, arXiv preprint arXiv:1312.6158 (2013)

  45. 45.

    Pannu, H.S., Singh, D., Malhi, A.K.: Improved particle swarm optimization based adaptive neuro-fuzzy inference system for benzene detection. Clean-Soil Air Water 46(5), 1700162 (2018)

    Google Scholar 

  46. 46.

    Sreeja, P., Hariharan, S.: Three-dimensional fusion of clustered and classified features for enhancement of liver and lesions from abdominal radiology images. IET Image Process. 13(10), 1680–1685 (2019)

    Google Scholar 

  47. 47.

    Singh, D., Kaur, M., Singh, H.: Remote sensing image fusion using fuzzy logic and gyrator transform. Remote Sens. Lett. 9(10), 942–951 (2018)

    Google Scholar 

  48. 48.

    Singh, D., Kumar, V.: Dehazing of outdoor images using notch based integral guided filter. Multimed. Tools Appl. 77(20), 27363–27386 (2018)

    Google Scholar 

  49. 49.

    Singh, D., Kumar, V.: Defogging of road images using gain coefficient-based trilateral filter. J. Electron. Imaging 27(1), 013004 (2018)

    Google Scholar 

  50. 50.

    Kaur, M., Kumar, V.: Fourier-mellin moment-based intertwining map for image encryption. Mod. Phys. Lett. B 32(09), 1850115 (2018)

    MathSciNet  Google Scholar 

  51. 51.

    Kaur, M., Kumar, V.: Colour image encryption technique using differential evolution in non-subsampled contourlet transform domain. IET Image Process. 12(7), 1273–1283 (2018)

    Google Scholar 

  52. 52.

    Prakash, O., Park, C.M., Khare, A., Jeon, M., Gwak, J.: Multiscale fusion of multimodal medical images using lifting scheme based biorthogonal wavelet transform. Optik 182, 995–1014 (2019)

    Google Scholar 

  53. 53.

    Xydeas, C., Petrovic, V.: Objective image fusion performance measure. Electron. Lett. 36(4), 308–309 (2000)

    Google Scholar 

  54. 54.

    Singh, D., Kumar, V.: Image dehazing using moore neighborhood-based gradient profile prior. Signal Process. 70, 131–144 (2019)

    Google Scholar 

  55. 55.

    Singh, D., Kumar, V.: A comprehensive review of computational dehazing techniques. Arch. Comput. Methods Eng. 26(5), 1395–1413 (2018)

    Google Scholar 

  56. 56.

    Kaur, M., Kumar, V.: Efficient image encryption method based on improved lorenz chaotic system. Electron. Lett. 54(9), 562–564 (2018)

    Google Scholar 

  57. 57.

    Kaur, M., Kumar, V.: Adaptive differential evolution-based lorenz chaotic system for image encryption. Arab. J. Sci. Eng. 43(12), 8127–8144 (2018)

    Google Scholar 

  58. 58.

    Mehboob, F., Abbas, M., Jiang, R., Rauf, A., Khan, S.A., Rehman, S.: Trajectory based vehicle counting and anomalous event visualization in smart cities. Clust. Comput. 21(1), 443–452 (2018)

    Google Scholar 

  59. 59.

    Wen, Y.: Remote sensing image land type data mining based on quest decision tree. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-1866-z

    Article  Google Scholar 

  60. 60.

    He, H., Liu, X., Shen, Y.: Relative radiometric correction of high-resolution remote sensing images based on feature category. Clust. Comput. (2018). https://doi.org/10.1007/s10586-017-1526-8

    Article  Google Scholar 

  61. 61.

    Zhang, L., Zhang, L., Liu, S., Zhou, J., Papavassiliou, C.: Low-level control technology of micro autonomous underwater vehicle based on intelligent computing. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-1909-5

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dilbag Singh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Singh, D. Fusion of medical images using deep belief networks. Cluster Comput 23, 1439–1453 (2020). https://doi.org/10.1007/s10586-019-02999-x

Download citation


  • Image fusion
  • Deep belief networks
  • Medical images
  • Fuzzy rules