Skip to main content

Advertisement

Log in

Characterization, modeling and scheduling of power consumption of scientific computing applications in multicores

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This article presents an empirical evaluation of power consumption for scientific computing applications in multicore systems. Three types of applications are studied, in single and combined executions on Intel and AMD servers, for evaluating the overall power consumption of each application. The main results indicate that power consumption behavior has a strong dependency with the type of application. Additional performance analysis shows that the best load of the server regarding energy efficiency depends on the type of the applications, with efficiency decreasing in heavily loaded situations. These results allow formulating a model to characterize applications according to power consumption, efficiency, and resource sharing, which provide useful information for resource management and scheduling policies. Several scheduling strategies are evaluated using the proposed energy model over realistic scientific computing workloads. Results confirm that strategies that maximize host utilization provide the best energy efficiency and performance results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Buyya, R., Vecchiola, C., Selvi, S.: Mastering Cloud Computing: Foundations and Applications Programming. Morgan Kaufmann, San Francisco, CA (2013)

    Google Scholar 

  2. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutor. 18(1), 732–794 (2016)

    Article  Google Scholar 

  3. Nesmachnow, S., Perfumo, C., Goiri, I.: Holistic multiobjective planning of datacenters powered by renewable energy. Clust. Comput. 18(4), 1379–1397 (2015)

    Article  Google Scholar 

  4. Anghel, A., Vasilescu, L., Mariani, G., Jongerius, R., Dittmann, G.: An instrumentation approach for hardware-agnostic software characterization. Int. J. Parallel Program. 44(5), 924–948 (2016)

    Article  Google Scholar 

  5. Brandolese, C., Corbetta, S., Fornaciari, W.: Software energy estimation based on statistical characterization of intermediate compilation code. In: International Symposium on Low Power Electronics and Design, pp. 333–338 (2011)

  6. Kurowski, K., Oleksiak, A., Piątek, W., Piontek, T., Przybyszewski, A., Węglarz, J.: Dcworms-a tool for simulation of energy efficiency in distributed computing infrastructures. Simul. Model. Pract. Theory 39, 135–151 (2013)

    Article  Google Scholar 

  7. Hernández, S., Fabra, J., Álvarez, P., Ezpeleta, J.: Simulation and realistic workloads to support the meta-scheduling of scientific workflows. In: Simulation and Modeling Methodologies, Technologies and Applications, pp. 155–167. Springer, Cham (2014)

  8. Bak, S., Krystek, M., Kurowski, K., Oleksiak, A., Piatek, W., Waglarz, J.: GSSIM-a tool for distributed computing experiments. Sci. Program. 19(4), 231–251 (2011)

    Google Scholar 

  9. Malhotra, R., Jain, P.: Study and comparison of various cloud simulators available in the cloud computing. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(9), 347–350 (2013)

    Google Scholar 

  10. Calheiros, R.N., Ranjan, R., Beloglazov, A., de Rose, C.A., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41(1), 23–50 (2011)

    Google Scholar 

  11. Armenta-Cano, F., Tchernykh, A., Cortes-Mendoza, J., Yahyapour, R., Drozdov, A.Y., Bouvry, P., Kliazovich, D., Avetisyan, A., Nesmachnow, S.: Min\_c: heterogeneous concentration policy for energy-aware scheduling of jobs with resource contention. Program. Comput. Softw. 43(3), 204–215 (2017)

    Article  MathSciNet  Google Scholar 

  12. Muraña, J., Nesmachnow, S., Iturriaga, S., Tchernykh, A.: Power consumption characterization of synthetic benchmarks in multicores. In: High Performance Computing, pp. 21–37. Springer, Cham (2018)

  13. Repko, A.F.: Interdisciplinary research: process and theory. SAGE, Los Angeles (2008)

    Google Scholar 

  14. Iturriaga, S., García, S., Nesmachnow, S.: An empirical study of the robustness of energy-aware schedulers for high performance computing systems under uncertainty. In: High Performance Computing, pp. 143–157. Springer, Berlin (2014)

  15. Nesmachnow, S., Dorronsoro, B., Pecero, J., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–680 (2013)

    Article  Google Scholar 

  16. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Conference on Power Aware Computing and Systems, pp. 1–5 (2008)

  17. Du Bois, K., Schaeps, T., Polfliet, S., Ryckbosch, F., Eeckhout, L.: Sweep: Evaluating computer system energy efficiency using synthetic workloads. In: 6\(^{th}\) International Conference on High Performance and Embedded Architectures and Compilers, pp. 159–166 (2011)

  18. Feng, X., Ge, R., Cameron, K.: Power and energy profiling of scientific applications on distributed systems. In: 19\(^{th}\) IEEE International Parallel and Distributed Processing Symposium, pp. 34–44 (2005)

  19. Langer, A., Totoni, E., Palekar, U.S., Kalé, L.: Energy-efficient computing for HPC workloads on heterogeneous manycore chips. In: Proceedings of the 6\(^{th}\) International Workshop on Programming Models and Applications for Multicores and Manycores, pp. 11–19 (2015)

  20. Barroso, L., Clidaras, J., Hölzle, U.: The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Archit. 8(3), 1–154 (2013)

    Article  Google Scholar 

  21. Malladi, K., Nothaft, F., Periyathambi, K., Lee, B., Kozyrakis, C., Horowitz, M.: Towards energy-proportional datacenter memory with mobile dram. In: 39th Annual International Symposium on Computer Architecture, pp. 37–48 (2012)

  22. Totoni, E., Jain, N., Kalé, L.: Toward runtime power management of exascale networks by on/off control of links. In: IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum, pp. 915–922 (2013)

  23. Kliazovich, D., Bouvry, P., Audzevich, Y., Khan, S.: Greencloud: A packet-level simulator of energy-aware cloud computing data centers. In: IEEE Global Telecommunications Conference, pp. 1–5 (2010)

  24. Núñez, A., Vázquez-Poletti, J., Caminero, A., Castañé, G., Carretero, J., Llorente, I.: Icancloud: a flexible and scalable cloud infrastructure simulator. J. Grid Comput. 10(1), 185–209 (2012)

    Article  Google Scholar 

  25. Kopytov, A.: Sysbench repository. https://github.com/akopytov/sysbench, online. Accessed 01 June 2017

  26. Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República. Revista de la Asociación de Ingenieros del Uruguay 61(1), 12–15 (2010). Text in Spanish

  27. Leung, J., Kelly, L., Anderson, J.: Handbook of scheduling: algorithms, models, and performance analysis. CRC Press Inc, Boca Raton, FL (2004)

    Google Scholar 

  28. Intel Xeon E52643v3 vs AMD Opteron 6172 comparison. http://cpuboss.com/cpus/Intel-Xeon-E5-2643-v3-vs-AMD-Opteron-6172, online. Accessed 29 March 2018

  29. Gao, Y., Guan, H., Qi, Z., Song, T., Huan, F., Liu, L.: Service level agreement based energy-efficient resource management in cloud data centers. Comput. Electr. Eng. 40(5), 1621–1633 (2014)

    Article  Google Scholar 

  30. McKinney, W.: pandas: a foundational python library for data analysis and statistics. Python High Perform. Sci. Comput., 1–9 (2011)

  31. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C.: Jupyter notebooks: a publishing format for reproducible computational workflows. In: Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press, Göttingen (2016)

  32. Begley, C.G.: Six red flags for suspect work. Nature 497(7450), 433–434 (2013)

    Article  Google Scholar 

  33. Theil, H.: Economic forecasts and policy. North-Holland, Amsterdam (1961)

    Google Scholar 

  34. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

    Article  Google Scholar 

  35. Tchernykh, A., Lozano, L., Bouvry, P., Pecero, J.E., Schwiegelshohn, U., Nesmachnow, S.: Energy-aware online scheduling: ensuring quality of service for iaas clouds. In: International Conference on High Performance Computing Simulation, pp. 911–918 (2014)

  36. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In: Job Scheduling Strategies for Parallel Processing, pp. 87–102. Springer, Berlin (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Muraña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muraña, J., Nesmachnow, S., Armenta, F. et al. Characterization, modeling and scheduling of power consumption of scientific computing applications in multicores. Cluster Comput 22, 839–859 (2019). https://doi.org/10.1007/s10586-018-2882-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2882-8

Keywords

Navigation