Identification and classification of best spreader in the domain of interest over the social networks

  • A. N. Arularasan
  • A. Suresh
  • Koteeswaran Seerangan


The emerging social networks promptly create greater opportunities for fast-developing viral marketing. The online social networks (OSNs) play an essential role in the information diffusion among the social users within the community. The social network being large-scale, it leads to the inconvenience in identifying the influential spreaders in a specific domain, as every social user receives the information from different sources through multiple connections over the network. Although, analyzing the complex social network is indispensable to determine the influence spreaders with the knowledge of understanding the dynamics of information evolution. The existing solutions of the influential measurement techniques lack in neglecting the redundant links and quantifying the temporal information among the social users while estimating the diffusion importance of a social user. Moreover, these techniques fail in analyzing the structural relationships in the domain. To overcome these obstacles, this paper presents a de-duplicated k-shell influence estimation (DKIE) model in the social network by classifying the influential spreaders based on the domain of interest using k-shell decomposition and N-gram similarity. The DKIE model incorporates two major phases such as generic influential spreader identification and domain-specific influential spreader identification. The first phase measures the diffusion importance of each active social user based on the structural relationships of the social network using k-shell decomposition method. It separates the core-like groups and true core and identifies the best spreaders regardless of the redundant links. The second phase exploits the topic of the discussion of the best spreaders and consequently, measures the topic-wise influence to categorize the domain-specific best spreaders using N-gram similarity measurement. The experimental results illustrate the effectiveness of DKIE approach.


Viral marketing Social network Core-like group k-shell Redundant link Influence Classification N-gram 


  1. 1.
    Bonchi, F., Castillo, C., Gionis, A., Jaimes, A.: Social network analysis and mining for business applications. ACM Trans. Intell. Syst. Technol. 2(3), 22 (2011)CrossRefGoogle Scholar
  2. 2.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: ACM Proceedings of the 21st International Conference on World Wide Web, pp. 519–528 (2012)Google Scholar
  3. 3.
    Chen, D., Lü, L., Shang, M.S., Zhang, Y., Zhou, T.: Identifying influential nodes in complex networks. Physica A 391(4), 1777–1787 (2012)CrossRefGoogle Scholar
  4. 4.
    Barbieri, N., Bonchi, F., Manco, G.: Topic-aware social influence propagation models. Knowl. Inf. Syst. 37(3), 555–584 (2013)CrossRefGoogle Scholar
  5. 5.
    Rabade, R., Mishra, N., Sharma, S.: Survey of influential user identification techniques in online social networks. In: Recent Advances in Intelligent Informatics, pp. 359–370. Springer, New York (2014)Google Scholar
  6. 6.
    Hou, B., Yao, Y., Liao, D.: Identifying all-around nodes for spreading dynamics in complex networks. Physica A 391(15), 4012–4017 (2012)CrossRefGoogle Scholar
  7. 7.
    Mangal, N., Niyogi, R., Milani, A.: Analysis of users’ interest based on tweets. In: 16th International Conference on Computational Science and Its Applications, pp. 12–23. Springer, New York (2016)Google Scholar
  8. 8.
    Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)CrossRefGoogle Scholar
  9. 9.
    Zeng, A., Zhang, C.J.: Ranking spreaders by decomposing complex networks. Phys. Lett. A 377(14), 1031–1035 (2013)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Tang, M., Zhou, T., Do, Y.: Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition. Sci. Rep. 5, 9602 (2015)CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Tang, M., Zhou, T., Do, Y.: Improving the accuracy of the k-shell method by removing redundant links: from a perspective of spreading dynamics. Sci. Rep. 5, 13172 (2015)CrossRefGoogle Scholar
  12. 12.
    Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. In: ACM Proceedings of the SIGMOD International Conference on Management of Data, pp. 1311–1322 (2014)Google Scholar
  13. 13.
    Kim, H., Yoneki, E.: Influential neighbours selection for information diffusion in online social networks. In: IEEE 21st International Conference on Computer Communications and Networks (ICCCN), pp. 1–7 (2012)Google Scholar
  14. 14.
    Lin, J.H., Guo, Q., Dong, W.Z., Tang, L.Y., Liu, J.G.: Identifying the node spreading influence with largest k-core values. Phys. Lett. A 378(45), 3279–3284 (2014)CrossRefzbMATHGoogle Scholar
  15. 15.
    Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: ACM Proceedings of the 22nd International Conference on Information and Knowledge Management, pp. 909–918 (2013)Google Scholar
  16. 16.
    Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: IEEE 27th International Conference on Data Engineering, pp. 51–62 (2011)Google Scholar
  17. 17.
    Michalski, R., Bródka, P., Kazienko, P., Juszczyszyn, K.; Quantifying social network dynamics. In: IEEE Fourth International Conference on Computational Aspects of Social Networks (CASoN), pp. 69–74 (2012)Google Scholar
  18. 18.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence in Twitter: the million follower fallacy. In: Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, Vol. 10, No. 30, pp. 10–17 (2011)Google Scholar
  19. 19.
    Sun, E., Rosenn, I., Marlow, C., Lento, T.M.: Gesundheit! modeling contagion through Facebook news feed. In: ICWSM (2009)Google Scholar
  20. 20.
    Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Natl. Acad. Sci. 106(51), 21544–21549 (2009)CrossRefGoogle Scholar
  21. 21.
    Di Caro, L., Cataldi, M., Schifanella, C.: The d-index: discovering dependences among scientific collaborators from their bibliographic data records. Scientometrics 93(3), 583–607 (2012)CrossRefGoogle Scholar
  22. 22.
    Zhang, S., Jin, X., Shen, D., Cao, B., Ding, X., Zhang, X.: Short text classification by detecting information path. In: ACM Proceedings of the 22nd International Conference on Information and Knowledge Management, pp. 727–732 (2013)Google Scholar
  23. 23.
    Cataldi, M., Mittal, N., Aufaure, M.A.: Estimating domain-based user influence in social networks. In: ACM Proceedings of the 28th Annual Symposium on Applied Computing, pp. 1957–1962 (2013)Google Scholar
  24. 24.
    Cataldi, M., Aufaure, M.A.: The 10 million follower fallacy: audience size does not prove domain-influence on Twitter. Knowl. Inf. Syst. 44(3), 559–580 (2015)CrossRefGoogle Scholar
  25. 25.
    Zhou, D., Han, W., Wang, Y.: Identifying topic-sensitive influential spreaders in social networks. Int. J. Hybrid Inf. Technol. 8(2), 409–422 (2015)CrossRefGoogle Scholar
  26. 26.
    Lachter, J., Brandt, S.L., Battiste, V., et al.: Enhanced ground support: lessons from work on reduced crew operations. Cogn. Technol. Work 19, 279 (2017). CrossRefGoogle Scholar
  27. 27.
    Kannan, N., Sivasubramanian, S., Kaliappan, M., Vimal, S., Suresh, A.: Predictive big data analytic on demonetization data using support vector machine. Cluster Comput. (2018). Google Scholar
  28. 28.
    Nonose, K., Okukubo, A., Yoda, Y., et al.: Support for creating introspective reports detailing behaviors with concept maps. Cogn. Technol. Work 18, 71 (2016). CrossRefGoogle Scholar
  29. 29.
    Suresh, A., Varatharajan, R.: Competent resource provisioning and distribution techniques for cloud computing environment. Cluster Comput. (2017). Google Scholar
  30. 30.
    Iacovides, I., Blandford, A., Cox, A., et al.: How external and internal resources influence user action: the case of infusion devices. Cogn. Technol. Work 18, 793 (2016). CrossRefGoogle Scholar
  31. 31.
    Chinnasamy, A., Sivakumar, B., Selvakumari, P., Suresh, A.: Minimum connected dominating set based RSU allocation for smart Cloud vehicles in VANET. Cluster Comput. (2018). Google Scholar
  32. 32.
    Gao, S., Ma, J., Chen, Z., Wang, G., Xing, C.: Ranking the spreading ability of nodes in complex networks based on local structure. Physica A 403, 130–147 (2014)CrossRefGoogle Scholar
  33. 33.
    Kondrak, G.: N-gram similarity and distance. In: Springer Proceedings of International Symposium on String Processing and Information Retrieval, pp. 115–126 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, School of ComputingVel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Computer Science and EngineeringNehru Institute of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations