Importance-based entropy measures of complex networks’ robustness to attacks

Article

Abstract

Intentional attacks usually cause greater damage than random failures to complex networks, so it is important to study the networks’ resilience to attacks. Although various entropy measures have been available to measure the heterogeneity of complex networks to analyze their properties, they can not distinguish the difference of robustness between the scale-free networks and random networks. Hence, we propose a new entropy measurement base on the node importance to measure complex networks’ robustness to attacks. The experimental analysis shows that the importance-based entropy measure describes the robustness properties of complex networks precisely which are in consistent with the well-known conclusion and it distinguishes the difference between the scale-free networks and random networks more obviously in the view of robustness than the existing entropy measures in the view of heterogeneity. We conclude that the entropy measurement based on the node importance is an effective measure of network’s resilience to intentional attacks and heterogeneity is not in direct relationship with the network’s resilience to errors and attacks for any network.

Keywords

Complex network Entropy Node importance Intentional attack Network robustness 

Notes

Acknowledgements

This work was supported in part by a grant from National Natural Science Foundation of China (Grant Nos. 61601114, 61602113, 61571110) and National High Technology Research and Development Program of China (863 Program) under Project No. 2013AA014001.

References

  1. 1.
    Pastor-Satorras, R., Castellano, C., Mieghem, P.V., et al.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Liu, Y.Y., Barabási, A.L.: Control principles of complex systems. Rev. Mod. Phys. 88(3), 035006 (2016)CrossRefGoogle Scholar
  3. 3.
    Rodrigues, F.A., Peron, T.K.D., Ji, P., et al.: The Kuramoto model in complex networks. Phys. Rep. 610, 1–98 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)CrossRefGoogle Scholar
  5. 5.
    De, D.M., Nicosia, V., Arenas, A., et al.: Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015)CrossRefGoogle Scholar
  6. 6.
    Gao, J., Barzel, B., Barabási, A.: Universal resilience patterns in complex networks. Nature 530(7590), 307 (2016)CrossRefGoogle Scholar
  7. 7.
    Kim, Y., Chen, Y.S., Linderman, K.: Supply network disruption and resilience: a network structural perspective. J. Oper. Manag. 33–34, 43–59 (2015)CrossRefGoogle Scholar
  8. 8.
    Majdandzic, A., Podobnik, B., Buldyrev, S.V., et al.: Spontaneous recovery in dynamical networks. Nat. Phys. 10(1), 34–38 (2014)CrossRefGoogle Scholar
  9. 9.
    Solé, R.V., Valverde, S.: Information theory of complex networks: on evolution and architectural constraints. Lect. Notes Phys. 650, 189–207 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Wang, B., Tang, H., Guo, C., et al.: Entropy optimization of scale-free networks’ robustness to random failures. Physica A 363(2), 591–596 (2006)CrossRefGoogle Scholar
  11. 11.
    Wu, J., Tan, Y.J., Deng, H.Z., et al.: Heterogeneity of scale-free networks. Syst. Eng. 27(5), 101–105 (2007)Google Scholar
  12. 12.
    Xiao, Y.H., Wu, W.T., Wang, H., et al.: Symmetry-based structure entropy of complex networks. Physica A 387(11), 2611–2619 (2008)CrossRefGoogle Scholar
  13. 13.
    Wu, L., Tan, Q., Zhang, Y.: Network connectivity entropy and its application on network connectivity reliability. Physica A 392(21), 5536–5541 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhang, Q., Li, M., Deng, Y.: A new structure entropy of complex networks based on nonextensive statistical mechanics. Int. J. Mod. Phys. C 27(10), 440–455 (2016)MathSciNetGoogle Scholar
  15. 15.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRefGoogle Scholar
  16. 16.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  18. 18.
    Liu, J.G., Wang, Z.T., Dang, Y.Z.: Optimization of robustness of scale-free network to random and targeted attacks. Mod. Phys. Lett. B 19(16), 785–792 (2005)CrossRefMATHGoogle Scholar
  19. 19.
    Batagelj, V., Mrvar, A.: Pajek—analysis and visualization of large networks. Lect. Notes Comput. Sci. 2265, 77–103 (2004)MATHGoogle Scholar
  20. 20.
    Batagelj, V.: Ragusan families marriage networks’. In: Ferligoj, A, Kramberger, A. (eds.) Developments in Data Analysis, pp. 217–228 (1996)Google Scholar
  21. 21.
    Imrich, W., Klavžar, S.: Product Graphs: Structure and Recognition. Wiley, New York (2000)MATHGoogle Scholar
  22. 22.
    North American Transportation Atlas Data. http://vlado.fmf.uni-lj.si/pub/networks/data/
  23. 23.
    Java Compile Time Dependency Graph. http://vlado.fmf.uni-lj.si/pub/networks/data/GD/GD.htm
  24. 24.
    Lusseau, D., Schneider, K., Boisseau, O.J., et al.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)CrossRefGoogle Scholar
  25. 25.
  26. 26.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations