Dispersion analysis and calculation on Cherenkov radiation of an accelerated electron beam in poloidal magnetized plasma

  • Wei Tian
  • Junming Zhang
  • Li Wang
  • Jing Cao
  • Jinrong Fan
  • Kataoka Takaki


In order to further study on radiation of a moving electron in poloidal magnetized plasma (PMP), theoretical analysis and simulation calculation of Cherenkov radiation (CR) under the condition of an accelerated electron beam in PMP are respectively presented in this paper. Through analysis of dielectric tensor in poloidal magnetized plasma with uniformly accelerated electron and description of beam-wave interaction in PMP by Maxwell’s equations, radiation mechanism of uniformly accelerated electron CR in PMP is described. Then eigenvalue and radiation condition are respectively obtained. Moreover, dispersion relation of radiation wave is also deduced through analysis of eigenvalues. At the same time, through analysis of effect that cyclotron frequency and plasma frequency have on eigenvalue, it is discovered that plasma frequency has great effect on not only p1 mode but also p2 mode, but cyclotron frequency only affects p2 mode. Finally, through simulation calculation, dispersion curves of both p1 mode and p2 mode are presented. Through comparing to the case of uniform moving electrons, the radiation conditions of the accelerated electrons are more relaxed, more prone to generate radiation. The theoretical analysis and simulation calculation can provide for further research of the radiation microwave in PMP.


Accelerated electron beam CR PMP Dispersion relation Eigenvalue 



The authors acknowledge the National Natural Science Foundation of China (Grants 51641708 and 51207171) and 2018 Hubei Provincial Natural Science Foundation of China.


  1. 1.
    Liu, S.G., Zhang, P., Liu, W.H., et al.: Surface polariton Cherenkov light radiation source. Phys. Rev. Lett. 109(15), 153902 (2012)CrossRefGoogle Scholar
  2. 2.
    Yasumoto, K., Shigematsu, H.: Analysis of propagation characteristics of radio waves in tunnels using a surface impedance approximation. Radio Sci. 19(2), 597–602 (1984)CrossRefGoogle Scholar
  3. 3.
    Shchagin, A.V.: Fresnel coefficients for parametric X-ray (Cherenkov) radiation. Phys. Usp. 58(8), 819–827 (2015)CrossRefGoogle Scholar
  4. 4.
    Harms, J., Rose, P.B., Erickson, A.: Characterization of gamma-ray cross talk in Cherenkov-based detectors for active interrogation imaging applications. IEEE Sens. J. 17(20), 6707–6715 (2017)CrossRefGoogle Scholar
  5. 5.
    Liu, S.G., Zhang, Y.X., Yan, Y., et al.: Cherenkov radiation by an electron bunch moving in Hermitian medium. J. Appl. Phys. 102(4), 044901 (2007)CrossRefGoogle Scholar
  6. 6.
    Dobrynina, A.A., Mikheev, N.V., Raffelt, G.G.: Radiative decay of keV-mass sterile neutrinos in a strongly magnetized plasma. Phys. Rev. D 90(11), 113015 (2014)CrossRefGoogle Scholar
  7. 7.
    Li, L.M., Cheng, G.X., Zhang, L., et al.: Role of the rise rate of beam current in the microwave radiation of vircator. J. Appl. Phys. 109(7), 074504 (2011)CrossRefGoogle Scholar
  8. 8.
    Kartashov, I.N., Kuzelev, M.V.: Cherenkov instability of a magnetized beam-plasma system with allowance for a momentum spread of beam electrons. Phys. Wave Phenom. 25(1), 43–51 (2017)CrossRefGoogle Scholar
  9. 9.
    Chen, C.M., Bai, Y.L., Zhang, J., et al.: Numerical study of oblique incidence of terahertz wave to magnetized plasma. High Power Laser Part. Beams 30(1), 51–55 (2018)Google Scholar
  10. 10.
    Hematizadeh, A., Jazayeri, S.M.: Study of terahertz radiation generation by two laser beams in an axial magnetized rippled density plasma. IEEE Trans. Plasma Sci. 45(7), 1717–1722 (2017)CrossRefGoogle Scholar
  11. 11.
    Shao, T., Liu, F., Hai, B., et al.: Surface modification of epoxy using an atmospheric pressure DBD to accelerate surface charge dissipation. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1557–1565 (2017)CrossRefGoogle Scholar
  12. 12.
    Tian, W., Chen, S.X., Xiao, J.X., et al.: Dispersion of Cherenkov radiation by electron uniform moving in poloidal magnetized plasma. Sens. Transducers 158(11), 274–278 (2013)Google Scholar
  13. 13.
    Gai, F., Chen, S.X., Chen, K., Li, J., et al.: Conduction characteristics of long-gap triggered vacuum switch. High Power Laser Part. Beams 24(4), 847–850 (2012)CrossRefGoogle Scholar
  14. 14.
    Zhang, W.X., Zhao, X.P., Zhao, S.T., et al.: Study on partial discharge detection of 10 kV power cable. Telkomnika 10(7), 1795–1799 (2012)MathSciNetGoogle Scholar
  15. 15.
    Tian, W., Gai, F., Chen, S.X., et al.: Experiment study on influence of trigger current on conduction characteristics of triggered vacuum switches. Trans. China Electrotech. Soc. 32(20), 28–33 (2017)Google Scholar
  16. 16.
    Li, X., Zhou, Z.S., Chen, P.Y., et al.: Study and application of the multi-gap for gas discharge. Trans. China Electrotech. Soc. 32(20), 70–76 (2017)Google Scholar
  17. 17.
    Wang, R.X., Hai, B., Tian, S.L., et al.: Optimization of dielectric material surface charge measurement and impact of plasma treatment on their surface electrical characteristics. High Volt. Eng. 43(6), 1808–1815 (2017)Google Scholar
  18. 18.
    Tian, W., Chen, S.X., Gai, F., et al.: Analysis of Cherenkov angle by electron uniform moving in poloidal magnetized plasma. Sens. Transducers 32(5), 3637–3646 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wei Tian
    • 1
  • Junming Zhang
    • 1
  • Li Wang
    • 1
  • Jing Cao
    • 1
  • Jinrong Fan
    • 1
  • Kataoka Takaki
    • 2
  1. 1.School of Computer ScienceSouth-Central University for NationalitiesWuhanChina
  2. 2.YorozuOyamaJapan

Personalised recommendations