Towards data storage in cryptographic systems: an efficient hardware architecture based on multivariate scheme for secure storage applications

Article
  • 16 Downloads

Abstract

Secure storage devices are a good example of the Internet of Things (IoTs), which require secure access control mechanisms via using the prominent pubic key cryptographic systems, e.g. RSA, ECC and related systems. However, quantum computer is in a position to attack RSA, ECC and other signature algorithms adopted by many storage devices. Therefore, storage security is facing severe threats. In this paper, an efficient hardware architecture based on multivariate scheme for storage devices is proposed. Multivariate scheme belongs to multivariate public key cryptography (MPKC), which uses affine transformations and central map transformations during cryptographic operations. The advantage of adopting multivariate scheme is that multivariate scheme is immune to quantum computer attack. The efficient hardware architecture is composed of processor module, cryptographic module, storage module, display module, power module, keyboard module, export module and terminal module (off-chip). We implement the hardware architecture on the methodology of TSMC-0.18 μm standard cell CMOS Application Specific Integrated Circuit. The implementation results show that the architecture based on multivariate scheme is very efficient and well suit for storage devices.

Keywords

Storage devices Multivariate public key cryptographic system (MPKC) Multivariate scheme Storage security 

Notes

Acknowledgements

This work is supported by Shenzhen Science and Technology Program under Grant (No. JCYJ20170306144219159, No. JCYJ20160428092427867), Special Fund for the Development of Strategic Emerging Industries and Future Industries of Shenzhen (No. 20170502142224600), Science and Technology Program of Shenzhen Polytechnic (No. 601722K20018).

References

  1. 1.
    Ding, J., Petzoldt, A.: Current state of multivariate cryptography. IEEE Secur. Priv. 15(4), 28–36 (2017)CrossRefGoogle Scholar
  2. 2.
    Shor, P.W.: Polynomial—time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Advances in Cryptology—EUROCRYPT 99, Prague, Czech Republic, vol. 1592. Springer, Berlin, pp. 206–222 (1999)Google Scholar
  4. 4.
    Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Third International Conference, ACNS 2005, New York, NY, USA, vol. 3531. Springer, Berlin, pp. 164–175 (2005)Google Scholar
  5. 5.
    Yi, H., Li, W.: On the importance of checking multivariate public key cryptography for side-channel attacks: the case of enTTS scheme. Comput. J. 60(8), 1197–1209 (2017)CrossRefGoogle Scholar
  6. 6.
    Petzoldt, A., Chen, M.S., Ding, J., et al.: HMFEv—an efficient multivariate signature scheme. In: International Workshop on Post-Quantum Cryptography. Springer, Cham, pp. 205-223 (2017)Google Scholar
  7. 7.
    Petzoldt, A., Bulygin, S., Buchmann, J.: Fast Verification for Improved Versions of the UOV and Rainbow Signature Schemes, Post-Quantum Cryptography, PQCrypto 2013, pp. 188–202. Springer, Berlin Heidelberg (2013)MATHGoogle Scholar
  8. 8.
    Liu, C.M., Zhao, L., Sun, Y.J.: The design of public key cryptography for key exchange base on multivariate equations. Appl. Mech. Mater. 513, 552–554 (2014)CrossRefGoogle Scholar
  9. 9.
    Szepieniec, A., Ding, J., Preneel, B.: Extension field cancellation: A new central trapdoor for multivariate quadratic systems. In: International Workshop on Post-Quantum Cryptography. Springer-Verlag, New York, Inc., pp. 182–196 (1996)Google Scholar
  10. 10.
    Thomae, E, Wolf, C.: Cryptanalysis of enhanced TTS, STS and all its variants, or: why cross—terms are important. In: 5th International Conference on Cryptology in Africa, Ifrance, Morocco. Springer-Verlag, Berlin, pp. 188–202 (2012)Google Scholar
  11. 11.
    Porras, J., Baena, J., Ding, J.: ZHFE, a New multivariate public key encryption scheme. In: International Workshop on Post-Quantum Cryptography. Springer International Publishing, pp. 229–245 (2014)Google Scholar
  12. 12.
    Tao, C., Xiang, H., Petzoldt, A., et al.: Simple matrix–a multivariate public key cryptosystem (MPKC) for encryption. Finite Fields Appl. 35, 352–368 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gao, S., Heindl, R.: Multivariate public key cryptosystems from diophantine equations. Designs Codes Cryptogr. 67(1), 1–18 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Huang, Y.J., Liu, F.H., Yang, B.Y.: Public-key cryptography from new multivariate quadratic assumptions. In: International Conference on Practice and Theory in Public Key Cryptography. Springer-Verlag, pp. 190–205 (2012)Google Scholar
  15. 15.
    An, X.: Certificateless multi-receiver signcryption scheme based on multivariate public key cryptography. Chin. J. Comput. 35(9), 1881 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ustimenko, V.: On the flag geometry of simple group of Lie type and multivariate cryptography. Algebra Discret. Math. 19(1), 130–144 (2015)MathSciNetMATHGoogle Scholar
  17. 17.
    Wang, J., Cheng, L.M., Su, T.: Multivariate cryptography based on clipped hopfield neural network. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–11 (2016)Google Scholar
  18. 18.
    Sun, X., Liu, H., Zhang, M.: Multivariate symmetric cryptography with 2-dimesion chaotic disturbation. in: International Conference on Wireless Communications & Signal Processing. IEEE, pp. 1–4 (2016)Google Scholar
  19. 19.
    Albrecht, M.R., Faugére, J.C., Fitzpatrick, R., et al.: Practical cryptanalysis of a public-key encryption scheme based on new multivariate quadratic assumptions. In: International Workshop on Public Key Cryptography. Springer Berlin Heidelberg, pp. 446–464 (2014)Google Scholar
  20. 20.
    Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time–area optimized public-key engines: MQ—cryptosystems as replacement for elliptic curves? In: Cryptographic Hardware and Embedded Systems—CHES 2008, Washington, D.C., USA. Springer-Verlag, Berlin, pp. 45–61 (2008)Google Scholar
  21. 21.
    Yi, H., Li, W.: Fast three-input multipliers over small composite fields for multivariate public key cryptography. Int. J. Secur. Appl. 9(9), 165–178 (2015)Google Scholar
  22. 22.
    Yi, H., Tang, S., Vemuri, R.: Fast inversions in small finite fields by using binary trees. Comput. J. 59(7), 1102–1112 (2016)CrossRefGoogle Scholar
  23. 23.
    Balasubramanian, S., Bogdanov, A., Rupp, A.,et al.: Fast multivariate signature generation in hardware: The case of Rainbow. In: International Conference on Application—Specific Systems, Architectures and Processors. IEEE, pp. 25–30 (2008)Google Scholar
  24. 24.
    Yi, H., Tang, S.: Very small FPGA processor for multivariate signatures. Comput. J. 59(7), 1091–1101 (2016)CrossRefGoogle Scholar
  25. 25.
    Shih JR., Hu, Y., Hsiao, M.C., et al.: Securing M2M with post-quantum public-key cryptography. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(1), 106–116 (2013)CrossRefGoogle Scholar
  26. 26.
    Yi, H., Li, W., Nie, Z.: Fast hardware implementations of inversions in small finite fields for special irreducible polynomials on FPGAs. Int. J. Secur. Appl. 19(9), 109–120 (2016)Google Scholar
  27. 27.
    Czypek, P, Heyse, S., Thomae, E.: Efficient implementations of MQPKS on constrained devices, Cryptographic Hardware and Embedded Systems—CHES 2012. Springer Berlin Heidelberg, pp. 374–389 (2012)Google Scholar
  28. 28.
    Tang, S., Yi, H., Ding, J., et al.: High-speed hardware implementation of rainbow signature on FPGAs. In: Post-Quantum Cryptography. Springer Berlin Heidelberg, pp. 228–243 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer EngineeringShenzhen PolytechnicShenzhenChina

Personalised recommendations