Skip to main content
Log in

Towards data storage in cryptographic systems: an efficient hardware architecture based on multivariate scheme for secure storage applications

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Secure storage devices are a good example of the Internet of Things (IoTs), which require secure access control mechanisms via using the prominent pubic key cryptographic systems, e.g. RSA, ECC and related systems. However, quantum computer is in a position to attack RSA, ECC and other signature algorithms adopted by many storage devices. Therefore, storage security is facing severe threats. In this paper, an efficient hardware architecture based on multivariate scheme for storage devices is proposed. Multivariate scheme belongs to multivariate public key cryptography (MPKC), which uses affine transformations and central map transformations during cryptographic operations. The advantage of adopting multivariate scheme is that multivariate scheme is immune to quantum computer attack. The efficient hardware architecture is composed of processor module, cryptographic module, storage module, display module, power module, keyboard module, export module and terminal module (off-chip). We implement the hardware architecture on the methodology of TSMC-0.18 μm standard cell CMOS Application Specific Integrated Circuit. The implementation results show that the architecture based on multivariate scheme is very efficient and well suit for storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ding, J., Petzoldt, A.: Current state of multivariate cryptography. IEEE Secur. Priv. 15(4), 28–36 (2017)

    Article  Google Scholar 

  2. Shor, P.W.: Polynomial—time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  3. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Advances in Cryptology—EUROCRYPT 99, Prague, Czech Republic, vol. 1592. Springer, Berlin, pp. 206–222 (1999)

  4. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Third International Conference, ACNS 2005, New York, NY, USA, vol. 3531. Springer, Berlin, pp. 164–175 (2005)

  5. Yi, H., Li, W.: On the importance of checking multivariate public key cryptography for side-channel attacks: the case of enTTS scheme. Comput. J. 60(8), 1197–1209 (2017)

    Article  MathSciNet  Google Scholar 

  6. Petzoldt, A., Chen, M.S., Ding, J., et al.: HMFEv—an efficient multivariate signature scheme. In: International Workshop on Post-Quantum Cryptography. Springer, Cham, pp. 205-223 (2017)

  7. Petzoldt, A., Bulygin, S., Buchmann, J.: Fast Verification for Improved Versions of the UOV and Rainbow Signature Schemes, Post-Quantum Cryptography, PQCrypto 2013, pp. 188–202. Springer, Berlin Heidelberg (2013)

    MATH  Google Scholar 

  8. Liu, C.M., Zhao, L., Sun, Y.J.: The design of public key cryptography for key exchange base on multivariate equations. Appl. Mech. Mater. 513, 552–554 (2014)

    Article  Google Scholar 

  9. Szepieniec, A., Ding, J., Preneel, B.: Extension field cancellation: A new central trapdoor for multivariate quadratic systems. In: International Workshop on Post-Quantum Cryptography. Springer-Verlag, New York, Inc., pp. 182–196 (1996)

  10. Thomae, E, Wolf, C.: Cryptanalysis of enhanced TTS, STS and all its variants, or: why cross—terms are important. In: 5th International Conference on Cryptology in Africa, Ifrance, Morocco. Springer-Verlag, Berlin, pp. 188–202 (2012)

  11. Porras, J., Baena, J., Ding, J.: ZHFE, a New multivariate public key encryption scheme. In: International Workshop on Post-Quantum Cryptography. Springer International Publishing, pp. 229–245 (2014)

  12. Tao, C., Xiang, H., Petzoldt, A., et al.: Simple matrix–a multivariate public key cryptosystem (MPKC) for encryption. Finite Fields Appl. 35, 352–368 (2015)

    Article  MathSciNet  Google Scholar 

  13. Gao, S., Heindl, R.: Multivariate public key cryptosystems from diophantine equations. Designs Codes Cryptogr. 67(1), 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  14. Huang, Y.J., Liu, F.H., Yang, B.Y.: Public-key cryptography from new multivariate quadratic assumptions. In: International Conference on Practice and Theory in Public Key Cryptography. Springer-Verlag, pp. 190–205 (2012)

  15. An, X.: Certificateless multi-receiver signcryption scheme based on multivariate public key cryptography. Chin. J. Comput. 35(9), 1881 (2012)

    Article  MathSciNet  Google Scholar 

  16. Ustimenko, V.: On the flag geometry of simple group of Lie type and multivariate cryptography. Algebra Discret. Math. 19(1), 130–144 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Wang, J., Cheng, L.M., Su, T.: Multivariate cryptography based on clipped hopfield neural network. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–11 (2016)

    Google Scholar 

  18. Sun, X., Liu, H., Zhang, M.: Multivariate symmetric cryptography with 2-dimesion chaotic disturbation. in: International Conference on Wireless Communications & Signal Processing. IEEE, pp. 1–4 (2016)

  19. Albrecht, M.R., Faugére, J.C., Fitzpatrick, R., et al.: Practical cryptanalysis of a public-key encryption scheme based on new multivariate quadratic assumptions. In: International Workshop on Public Key Cryptography. Springer Berlin Heidelberg, pp. 446–464 (2014)

  20. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time–area optimized public-key engines: MQ—cryptosystems as replacement for elliptic curves? In: Cryptographic Hardware and Embedded Systems—CHES 2008, Washington, D.C., USA. Springer-Verlag, Berlin, pp. 45–61 (2008)

  21. Yi, H., Li, W.: Fast three-input multipliers over small composite fields for multivariate public key cryptography. Int. J. Secur. Appl. 9(9), 165–178 (2015)

    Google Scholar 

  22. Yi, H., Tang, S., Vemuri, R.: Fast inversions in small finite fields by using binary trees. Comput. J. 59(7), 1102–1112 (2016)

    Article  MathSciNet  Google Scholar 

  23. Balasubramanian, S., Bogdanov, A., Rupp, A.,et al.: Fast multivariate signature generation in hardware: The case of Rainbow. In: International Conference on Application—Specific Systems, Architectures and Processors. IEEE, pp. 25–30 (2008)

  24. Yi, H., Tang, S.: Very small FPGA processor for multivariate signatures. Comput. J. 59(7), 1091–1101 (2016)

    Article  MathSciNet  Google Scholar 

  25. Shih JR., Hu, Y., Hsiao, M.C., et al.: Securing M2M with post-quantum public-key cryptography. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(1), 106–116 (2013)

    Article  Google Scholar 

  26. Yi, H., Li, W., Nie, Z.: Fast hardware implementations of inversions in small finite fields for special irreducible polynomials on FPGAs. Int. J. Secur. Appl. 19(9), 109–120 (2016)

    Google Scholar 

  27. Czypek, P, Heyse, S., Thomae, E.: Efficient implementations of MQPKS on constrained devices, Cryptographic Hardware and Embedded Systems—CHES 2012. Springer Berlin Heidelberg, pp. 374–389 (2012)

  28. Tang, S., Yi, H., Ding, J., et al.: High-speed hardware implementation of rainbow signature on FPGAs. In: Post-Quantum Cryptography. Springer Berlin Heidelberg, pp. 228–243 (2011)

Download references

Acknowledgements

This work is supported by Shenzhen Science and Technology Program under Grant (No. JCYJ20170306144219159, No. JCYJ20160428092427867), Special Fund for the Development of Strategic Emerging Industries and Future Industries of Shenzhen (No. 20170502142224600), Science and Technology Program of Shenzhen Polytechnic (No. 601722K20018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, H., Nie, Z. Towards data storage in cryptographic systems: an efficient hardware architecture based on multivariate scheme for secure storage applications. Cluster Comput 22 (Suppl 4), 8639–8646 (2019). https://doi.org/10.1007/s10586-018-1933-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1933-5

Keywords

Navigation