The probabilistic model and forecasting of power load based on JMAP-ML and Gaussian process

Article
  • 6 Downloads

Abstract

The power load is a significant and important factor to the power system which can provide secure power supply and reliable power system. In this paper, we focus on the approximation and forecasting of the power load profiles based on the Gaussian mixture model. In order to infer the parameters of each component of GMM, we employ the joint maximum a posterior and maximum likelihood algorithm (JMAP-ML). Given the approximation of the power load, the Gaussian process regression method are utilized to forecast the power load in the time sequence. The simulation results show that the proposed algorithms can closely approximate the power load profiles and forecast the power load with lower errors.

Keywords

Power load Approximation and forecasting Gaussian mixture model (GMM) JMAP-ML Gaussian process regression 

Notes

Acknowledgements

The work is supported by the Natural Science Foundation of China (61572032), Key Natural Science Research Project of Anhui Province (KJ2017A107).

References

  1. 1.
    Amin, S.M., Wollenberg, B.F.: Toward a smart grid: power delivery for the 21st century. IEEE Power Energy Mag. 3(5), 34–41 (2005)CrossRefGoogle Scholar
  2. 2.
    Santacana, E., Rackliffe, G., Tang, L., Feng, X.: Getting smart. IEEE Power Energy Mag. 8(2), 41–48 (2010)CrossRefGoogle Scholar
  3. 3.
    Ghosh, A.K., Lubkeman, D.L., Downey, M.J., Jones, R.H.: Distribution circuit state estimation using a probabilistic approach. IEEE Trans. Power Syst. 12(1), 45–51 (1997)CrossRefGoogle Scholar
  4. 4.
    Heunis, S.W., Herman, R.: A probabilistic model for residential consumer loads. IEEE Trans. Power Syst. 17(3), 621–625 (2002)CrossRefGoogle Scholar
  5. 5.
    Balestrassi, P., Paiva, A., de Souza, A.Z., Turrioni, J., Popova, E.: A multivariate descriptor method for change-point detection in nonlinear time series. J. Appl. Stat. 38(2), 327–342 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Seppãlã, A.: Statistical distribution of customer load profiles. In: Proceedings of EMPD’95, 1995 International Conference on Energy Management and Power Delivery, vol. 2, pp. 696–701. IEEE (1995)Google Scholar
  7. 7.
    Tina, G., Gagliano, S., Raiti, S.: Hybrid solar/wind power system probabilistic modelling for long-term performance assessment. Solar Energy 80(5), 578–588 (2006)CrossRefGoogle Scholar
  8. 8.
    Li, W., Zhou, J., Lu, J., Yan, W.: Incorporating a combined fuzzy and probabilistic load model in power system reliability assessment. IEEE Trans. Power Syst. 22(3), 1386–1388 (2007)CrossRefGoogle Scholar
  9. 9.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)MATHGoogle Scholar
  10. 10.
    Singh, R., Pal, B., Jabr, R.: Distribution system state estimation through gaussian mixture model of the load as pseudo-measurement. IET Gener. Transm. Distrib. 4(1), 50–59 (2010)CrossRefGoogle Scholar
  11. 11.
    Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017)Google Scholar
  12. 12.
    Yin, F., Fritsche, C., Gustafsson, F.: EM- and JMAP-ML based joint estimation algorithms for robust wireless geolocation in mixed LOS/NLOS environments. IEEE Trans. Signal Process. 62(1), 168–182 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, H.-Z., Guo, S., Li, C.-J., Sun, J.-Q.: A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowl.-Based Syst. 37, 378–387 (2013)CrossRefGoogle Scholar
  14. 14.
    Dong, R., Pedrycz, W.: A granular time series approach to long-term forecasting and trend forecasting. Physica A 387(13), 3253–3270 (2008)CrossRefGoogle Scholar
  15. 15.
    Niu, D., Wang, Y., Wu, D.D.: Power load forecasting using support vector machine and ant colony optimization. Expert Syst. Appl. 37(3), 2531–2539 (2010)CrossRefGoogle Scholar
  16. 16.
    Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., Lendasse, A.: Methodology for long-term prediction of time series. Neurocomputing 70(16), 2861–2869 (2007)CrossRefGoogle Scholar
  17. 17.
    Al-Hamadi, H., Soliman, S.: Long-term/mid-term electric load forecasting based on short-term correlation and annual growth. Electr. Power Syst. Res. 74(3), 353–361 (2005)CrossRefGoogle Scholar
  18. 18.
    Reis, A.R., Da Silva, A.A.: Feature extraction via multiresolution analysis for short-term load forecasting. IEEE Trans. Power Syst. 20(1), 189–198 (2005)CrossRefGoogle Scholar
  19. 19.
    Wang, J., Li, L., Niu, D., Tan, Z.: An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl. Energy 94, 65–70 (2012)CrossRefGoogle Scholar
  20. 20.
    Pai, P.-F., Hong, W.-C.: Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers. Manag. 46(17), 2669–2688 (2005)CrossRefGoogle Scholar
  21. 21.
    Pappas, S.S., Ekonomou, L., Karamousantas, D.C., Chatzarakis, G., Katsikas, S., Liatsis, P.: Electricity demand loads modeling using autoregressive moving average (arma) models. Energy 33(9), 1353–1360 (2008)CrossRefGoogle Scholar
  22. 22.
    Pappas, S.S., Ekonomou, L., Karampelas, P., Karamousantas, D., Katsikas, S., Chatzarakis, G., Skafidas, P.: Electricity demand load forecasting of the hellenic power system using an arma model. Electr. Power Syst. Res. 80(3), 256–264 (2010)CrossRefGoogle Scholar
  23. 23.
    Vlachogiannis, J.G.: Probabilistic constrained load flow considering integration of wind power generation and electric vehicles. IEEE Trans. Power Syst. 24(4), 1808–1817 (2009)CrossRefGoogle Scholar
  24. 24.
    Kandil, M., El-Debeiky, S., Hasanien, N.: The implementation of long-term forecasting strategies using a knowledge-based expert system: part-ii. Electr. Power Syst. Res. 58(1), 19–25 (2001)CrossRefGoogle Scholar
  25. 25.
    Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. Wiley, New York (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wengen Gao
    • 1
    • 2
  • Qigong Chen
    • 2
  • Yuan Ge
    • 2
  • YiQing Huang
    • 2
  1. 1.School of Internet of Things EngineeringJiangnan UniversityWuxiChina
  2. 2.School of Electrical EngineeringAnhui Polytechnic UniversityWuhuChina

Personalised recommendations