Advertisement

QCs scheduling scheme of genetic algorithm (GA) and improved firefly algorithm (FA)

Article
  • 67 Downloads

Abstract

As an important part of container logistics, quay cranes (QCs) are crucial equipment in multimodal container transportation. The scheduling and allocation of QCs determine the operational efficiency of container terminals. By analyzing the way quay cranes are operated, this paper establishes a mixed-integer dynamic rolling-horizon programming model for the scheduling and allocation of QCs and proposes use of a genetic algorithm and two improved firefly algorithms based on segment encoding technology to formulate an optimum QC scheduling scheme. In doing so, the improved approach has made QC control more efficient and balanced.

Keywords

Container terminal Entire quay length Quay cranes scheduling Genetic algorithm Improved firefly algorithm 

Notes

Acknowledgement

This work was supported by Shanghai Pujiang Program (15PJ1402900).

References

  1. 1.
    Imai, A., Chen, H.C., Nishimura, E., Papadimitriou, S.: The simultaneous berth and quay crane allocation problem. Transp. Res. E 44(5), 900–920 (2008)CrossRefGoogle Scholar
  2. 2.
    Liang, C., Huang, Y., Yang, Y.: A quay crane dynamic scheduling problem by hybrid evolutionary algorithm for berth allocation planning. Comput. Ind. Eng. 56(3), 1021–1028 (2009)CrossRefGoogle Scholar
  3. 3.
    Zhou, P., Kang, H.: Study on berth and quay-crane allocation under stochastic environments in container terminal. Syst. Eng. Theory Practice 28(1), 161–169 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chang, D., Jiang, Z., Yan, W., He, J.: Integrating berth allocation and quay crane assignments. Transp. Res. E 46(6), 975–990 (2010)CrossRefGoogle Scholar
  5. 5.
    Han, X., Lu, Z., Xi, L.: A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. Eur. J. Oper. Res. 207(3), 1327–1340 (2010)CrossRefMATHGoogle Scholar
  6. 6.
    Kim, K., Park, Y.: A crane scheduling method for port container terminals. Eur. J. Oper. Res. 156(3), 752–768 (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Moccia, L., Cordeau, J.F., Gaudioso, M., Laporte, G.: A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Naval Res. Logist. 53(1), 45–59 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chung, S., Choy, K.: A modified genetic algorithm for quay crane scheduling operations. Expert Syst. Appl. 39(4), 4213–4221 (2012)CrossRefGoogle Scholar
  9. 9.
    Sammarra, M., Cordeau, J.F., Laporte, G., Monaco, M.F.: A tabu search heuristic for the quay crane scheduling problem. J. Sched. 10(4), 327–336 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Kaveshgar, N., Huynh, N., Rahimian, S.K.: An efficient genetic algorithm for solving the quay crane scheduling problem. Expert Syst. Appl. 39(18), 13108–13117 (2012)CrossRefGoogle Scholar
  11. 11.
    Lee, D., Wang, H., Miao, L.: Quay crane scheduling with non-interference constraints in port container terminals. Transp. Res. E 44(1), 124–135 (2008)CrossRefGoogle Scholar
  12. 12.
    Bierwirth, C., Meisel, F.: A fast heuristic for quay crane scheduling with interference constraints. J. Sched. 12(4), 345–360 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chen, J.H., Lee, D.H., Goh, M.: An effective mathematical formulation for the unidirectional cluster-based quay crane scheduling problem. Eur. J. Oper. Res. 232(1), 198–208 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Meisel, F., Bierwirth, C.: A unified approach for the evaluation of quay crane scheduling models and algorithms. Comput. Oper. Res. 38(3), 683–693 (2011)CrossRefGoogle Scholar
  15. 15.
    Legato, P., Trunfio, R., Meisel, F.: Modeling and solving rich quay crane scheduling problems. Comput. Oper. Res. 39(9), 2063–2078 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lu, Z., Han, X., Xi, L., Erera, A.L.: A heuristic for the quay crane scheduling problem based on contiguous bay crane operations. Comput. Oper. Res. 39(12), 2915–2928 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Hybrid evolutionary computation methods for quay crane scheduling problems. Comput. Oper. Res. 40(8), 2083–2093 (2013)CrossRefMATHGoogle Scholar
  18. 18.
    Guan, Y., Yang, K.H., Zhou, Z.: The crane scheduling problem: models and solution approaches. Ann. Oper. Res. 203(1), 119–139 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Daganzo, C.F.: The crane scheduling problem. Transp. Res. B 23(3), 159–175 (1989)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Peterkofsky, R.I., Daganzo, C.F.: A branch and bound solution method for the crane scheduling problem. Transp. Res. B 24(3), 159–172 (1990)CrossRefGoogle Scholar
  21. 21.
    Liu, J., Yw, Wan, Wang, L.: Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures. Naval Res. Logist. 53(1), 60–74 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Tavakkoli-Moghaddam, R., Makui, A., Salahi, S., Bazzazi, M., Taheri, F.: An efficient algorithm for solving a new mathematical model for a quay crane scheduling problem in container ports. Comput. Ind. Eng. 56(1), 241–248 (2009)CrossRefGoogle Scholar
  23. 23.
    Unsal, O., Oguz, C.: Constraint programming approach to quay crane scheduling problem. Transp. Res. E 59, 108–122 (2013)CrossRefGoogle Scholar
  24. 24.
    Fu, Y.M., Diabat, A., Tsai, I.T.: A multi-vessel quay crane assignment and scheduling problem: formulation and heuristic solution approach. Expert Syst. Appl. 41(15), 6959–6965 (2014)CrossRefGoogle Scholar
  25. 25.
    Diabat, A., Theodorou, E.: An integrated quay crane assignment and scheduling problem. Comput. Ind. Eng. 73, 115–123 (2014)CrossRefGoogle Scholar
  26. 26.
    Zhang, H., Kim, K.H.: Maximizing the number of dual-cycle operations. Comput. Ind. Eng. 56(3), 979–992 (2009)CrossRefGoogle Scholar
  27. 27.
    Meisel, F., Wichmann, M.: Container sequencing for quay cranes with internal reshu_es. OR Spectr. 32(3), 569–591 (2010)CrossRefMATHGoogle Scholar
  28. 28.
    Yang, X.S. (2010) Nature-inspired metaheuristic algorithms: Second edition Yu S, Wang S, Zhen L (2016) Quay crane scheduling problem with considering tidal impact and fuel consumption. Flex. Serv. Manuf. J., 1–24Google Scholar
  29. 29.
    Arunkumar, N., Ramkumar, K., Venkatraman, V., Abdulhay, E., Fernandes, S.L., Kadry, S., Segal, S.: Classification of focal and non focal EEG using entropies. Pattern Recogn. Lett. 94, 112–117 (2017)CrossRefGoogle Scholar
  30. 30.
    Arunkumar, N., Kumar, K.R., Venkataraman, V.: Automatic detection of epileptic seizures using new entropy measures. J. Med. Imaging Health Inform. 6(3), 724–730 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Logistics EngineeringShanghai Maritime UniversityShanghaiChina
  2. 2.Engineering Research Center of Container Supply Chain Technology of Ministry of EducationShanghai Maritime UniversityShanghaiChina

Personalised recommendations