Classification of malignant melanoma and benign skin lesion by using back propagation neural network and ABCD rule

  • M. Monisha
  • A. Suresh
  • B. R. Tapas Bapu
  • M. R. Rashmi


Distinctive human cancer could be a standout amongst the foremost dangerous disorder that is essentially caused by hereditary insecurity of various sub-atomic changes. Among many sorts of human growth, neoplasm is that the most generally recognized one. To acknowledge skin growth at a starting amount we’ll examine and break down them through totally different ways named as division and highlight extraction. Here, we have a tendency to center dangerous malignant melanoma skin growth, (because of the high centralization of Melanoma-Heir we provide our skin, within the stratum layer of the skin) recognition. In this, we have a tendency to used our ABCD manage dermoscopy innovation for harmful malignant melanoma neoplasm recognition. During this framework distinctive advance for malignant melanoma skin injury portrayal i.e., initial the Image Acquisition Technique, pre-preparing, division, characterize highlight for skin Feature choice decides sore portrayal, characterization ways. within the Feature extraction by advanced image getting ready strategy incorporates, symmetry recognition, border detection, shading, and dimension discovery and moreover we have a tendency to used LBP for separate the surface based mostly highlights and In order to obtain pattern wise features. Here we have a tendency to plan the rear propagation neural network to rearrange the type or harmful stage. Because neural network can give multi classification results and can back propagate to hidden layers.


Melanoma ABCD rule Artificial Intelligence (AI) Dermoscopy 


  1. 1.
    Lozano, R., Naghavi, M., Foreman, K.: Global and regional mortality from 235 causes of death for twenty age teams in 1990 and 2010: a scientific analysis for the world burden of illness study 2010. J. Lancet 380(9859), 2095–2128 (2013)CrossRefGoogle Scholar
  2. 2.
    Godar, D.E.: Worldwide increasing incidences of cutaneal malignant melanoma. J. Cancer (2011)Google Scholar
  3. 3.
    Mocellin, S., Nitti, D.: Cutaneous malignant melanoma in situ: translational proof from an outsized population-based study. J. Oncol. 16(6), 896–903 (2011)Google Scholar
  4. 4.
    Henning, J.S., Dusza, S.W., Wang, S.Q., et al.: The money (colour, design, symmetry, and homogeneity) formula for dermoscopy. J. Am. Acad. Dermatol. 56(1), 45–52 (2007)CrossRefGoogle Scholar
  5. 5.
    Ferris, L.K., Harkes, J.A., Gilbert, B., et al.: Computer-aided classification of melanocytic lesions exploitation dermoscopic images. J. Am. Acad. Dermatol. 73(5), 769–776 (2015)CrossRefGoogle Scholar
  6. 6.
    Fekri-Ershad, S., Tajeripour, F.: Impulsive—noise resistant color—texure classification approach using hybrid color local binary patterns and kullbck- Leibler divergence, (2017). Comput. J. 60(11), 1633–1648 (2017). CrossRefGoogle Scholar
  7. 7.
    Ramteke, N.S., Jain, S.V.: ABCD rule based mostly automatic computer-aided carcinoma detection exploitation Matlab\(\textregistered \). Int. J. Comput. Appl. Technol. 4(4), 691 (2013)Google Scholar
  8. 8.
    Di Leo, G., Paolillo, A., Sommella, P., et al.: Automatic designation of melanoma: a computer code supported the 7-point check-list. In: 2010 forty third Hawaii International Conference on System Sciences (HICSS) (2010)Google Scholar
  9. 9.
    Smaoui, N., Bessassi, S.: A developed system for malignant melanoma diagnosis. Int. J. Comput. Vis. Signal Methods 3(1), 10–17 (2013)Google Scholar
  10. 10.
    Stolz, W., Riemann, A., Cognetta, A., et al.: ABCD rule of dermatoscopy-a new sensible technique for early recognition of malignant-melanoma. Eur. J. Dermatol. 4(7), 521–527 (1994)Google Scholar
  11. 11.
    Mokrani, K., Kasmi, R.: Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule. IET Image Process. 10(6), 448–455 (2016). CrossRefGoogle Scholar
  12. 12.
    Hajdarevic, A., Dzananovic, I., Banjanovic-Mehmedovic, L., Mehmedovic, F.: Anomaly detection in thermal power plant using probabilistic neural network. In: 38th international convention on information and communication technology electronics and microelectronics (2015).
  13. 13.
    Pehamberger, H., Steiner, A., Wolff, K.: In vivo epiluminescence research of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. J. Am. Acad. Dermatol. 17(4), 571–583 (1987)CrossRefGoogle Scholar
  14. 14. (2017). Accessed 8 Dec 2017
  15. 15.
    Burroni, M., Corona, R., Dell’Eva, G., et al.: Melanoma computer-aided designation reliableness and practicability study. Clin. Cancer Res. 10(6), 1881–1886 (2004)CrossRefGoogle Scholar
  16. 16.
    Flute, D., Crisman, G., Schoinas, S., et al.: Computer-automated ABCD versus dermatologists with totally different degrees of expertise in dermoscopy. Eur. J. Dermatol. 24(4), 477–481 (2014)Google Scholar
  17. 17.
    Nachbar, F., Stolz, W., Merkle, T., et al.: The ABCD rule of dermatoscopy: high prospective price within the designation of uncertain melanocytic skin lesions. J. Am. Acad. Dermatol. 30(4), 551–559 (1994)CrossRefGoogle Scholar
  18. 18.
    Ramezani, M., Karimian, A., Moallem, P.: Automatic detection of skin cancer exploitation megascopic images. J. Med. Signals Sens. 4(4), 281 (2014)Google Scholar
  19. 19.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Surveys 3.: knowledge cluster a review. ACM. Comput. 1(3), 264–323 (1999)CrossRefGoogle Scholar
  20. 20.
    Menzies, S.W., Crotty, K.A., Ingvar, C., et al.: An atlas of surface research of pigmented skin lesions: dermoscopy. McGraw-Hill Roseville, Sydney (2003)Google Scholar
  21. 21.
    Ponder-Sutton, A.M.: The automating of open source intelligence (2016).
  22. 22.
    Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with application in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 450–465 (1999)CrossRefGoogle Scholar
  23. 23.
    Yeo, C.S., Buyya, R., Pourreza, H., Eskicioglu, R., Graham, P., Sommers, F.: Cluster computing: high-performance, high-availability, and high-throughput processing on a network of computers (2006).
  24. 24.
    Celebi, M.E., Iyatomi, H., Stoecker, W.V.: Automatic detection of blue-white veil and connected structures in dermoscopy images. Comput. Med. Imaging Gr. 32(8), 670–677 (2008)CrossRefGoogle Scholar
  25. 25.
    Patwardhan, S.V., Dhawan, A.P., Relue, P.A.: Classification of malignant melanoma exploitation tree structured riffle transforms. Comput. Methods Programs Biomed. 72(3), 223–239 (2003)CrossRefGoogle Scholar
  26. 26. (2017). Accessed 8 Dec 2017
  27. 27.
    Garnavi, R., Aldeen, M., Bailey, J.: Computer-aided designation of malignant melanoma exploitation border-and wavelet-based texture analysis. IEEE Trans. Inf. Technol. Biomed. 16(6), 1239–1252 (2012)CrossRefGoogle Scholar
  28. 28.
    Argenziano, G., Catricalà, C., Ardigo, M., et al.: Seven-point list of dermoscopy revisited. Br. J. Dermatol. 164(4), 785–790 (2011)CrossRefGoogle Scholar
  29. 29.
    Zalaudek, I., Argenziano, G., Soyer, H., et al.: Three-point list of dermoscopy: AN open net study. Br. J. Dermatol. 154(3), 431–437 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Monisha
    • 1
  • A. Suresh
    • 2
  • B. R. Tapas Bapu
    • 3
  • M. R. Rashmi
    • 4
  1. 1.Anna UniversityChennaiIndia
  2. 2.Department of Electrical and Electronics EngineeringS.A. Engineering CollegeChennaiIndia
  3. 3.Department of Electronics and Communication EngineeringS.A. Engineering CollegeChennaiIndia
  4. 4.Department of Electrical and Electronics Engineering, Amrita School of EngineeringsAmrita Vishwa VidyapeethamBengaluruIndia

Personalised recommendations