Skip to main content
Log in

The precision of Mach–Zehnder interferometer in the presence of bit-phase flip

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The paper presents the phase precision of three input cases in the presence of bit-phase flip. If bit-phase flip exists in two arms of interferometer, the precision of coherent state and vacuum state will keep in the standard quantum limit, and the precision of coherent state and squeezed vacuum state drops from 1\(/N^{0.75}\) to the standard quantum limit. If bit-phase flip exists before the first beam splitter or after the second beam splitter, all the precisions of three input cases will firstly decrease and then increase with increasing \(\eta \) (parameters characterizing noise strength) from 0 to 1. Spin squeezing state is more likely to be affected by bit-phase flip, and its precision is lower than the other two input cases when \(\eta \) approaches 0.5. We found the precision of the spin squeezing state decreases faster than the other two cases in most instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wolfgramm, F., Vitelli, C., Beduini, F.A., et al.: Entanglement-enhanced probing of a delicate material system. Nat. Photon. 7, 28–32 (2013)

    Article  Google Scholar 

  2. Taylor, M., Janousek, J., Daria, V., et al.: Biological measurement beyond the quantum limit. Nat. Photon. 7, 223–229 (2013)

    Article  Google Scholar 

  3. Song, Ningfang, Xiangxiang, Lu, Xiaobin, Xu, et al.: Measurement of frequency sweep nonlinearity using atomic absorption spectroscopy. Opt. Commun. 407, 165–168 (2018)

    Article  Google Scholar 

  4. Muessel, W., Strobel, H., Linnemann, D., et al.: Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014)

    Article  Google Scholar 

  5. Aasi, J., Abadie, J., Abbott, B.P., et al.: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013)

    Article  Google Scholar 

  6. Czekaj, Ł., Przysiężna, A., Horodecki, M., et al.: Quantum metrology: Heisenberg limit with bound entanglement. Phys. Rev. A 92, 062303 (2015)

    Article  Google Scholar 

  7. Luis, A.: Breaking the weak Heisenberg limit. Phys. Rev. A 95, 032113 (2017)

    Article  MathSciNet  Google Scholar 

  8. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)

    Article  Google Scholar 

  9. Paris, M.G.A.: Small amount of squeezing in high-sensitive realistic interferometry. Phys. Lett. A 1995(201), 132–138 (1995)

    Article  Google Scholar 

  10. The LIGO Scientific Collaboration.: A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011)

  11. Wu, L.N., Tey, M.K., You, L.: Persistent atomic spin squeezing at the Heisenberg limit. Phys. Rev. A 92, 063610 (2015)

    Article  Google Scholar 

  12. Ono, T., Sabines-Chesterking, J., Cable, H., et al.: Optical implementation of spin squeezing. New J. Phys. 19, 053005 (2017)

    Article  Google Scholar 

  13. Bukhari, S.H., Aslam, S., Mustafa, F., et al.: Entangled coherent states for quantum information processing. Optik 125(15), 3788–3790 (2014)

    Article  Google Scholar 

  14. Bohmann, M., Sperling, J., Vogel, W.: Entanglement and phase properties of noisy NOON states. Phys. Rev. A 91, 042332 (2015)

    Article  Google Scholar 

  15. Bergmann, M., van Loock, P.: Quantum error correction against photon loss using NOON states. Phys. Rev. A 94, 012311 (2016)

    Article  Google Scholar 

  16. Zhang, Y.M., Li, X.W., Yang, W., et al.: Quantum Fisher information of entangled coherent state in the presence of photon losses. Phys. Rev. A 88, 043832 (2013)

    Article  Google Scholar 

  17. Demkowicz-Dobrza’nski, R., Kolodynski, J., Guta, M.: The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3, 1063 (2012)

    Article  Google Scholar 

  18. Zhang, S.L., Zou, X.B., Shi, J.H., et al.: Quantum illumination in the presence of photon loss. Phys. Rev. A 90, 052308 (2014)

    Article  Google Scholar 

  19. Zhang, X.X., Yang, Y.X., Wang, Xiang-Bin: Lossy quantum-optical metrology with squeezed states. Phys. Rev. A 88, 013838 (2013)

    Article  Google Scholar 

  20. Gao, Y.: Quantum optical metrology in the lossy SU (2) and SU (1,1) interferometers. Phys. Rev. A 94, 023834 (2016)

    Article  Google Scholar 

  21. Hamerly, R., Mabuchi, H.: Quantum noise of free-carrier dispersion in semiconductor optical cavities. Phys. Rev. A 92, 023819 (2015)

    Article  Google Scholar 

  22. Venkatesh, B.P., O’Dell, D.H.J.: Bloch oscillations of cold atoms in a cavity: effects of quantum noise. Phys. Rev. A 88, 013848 (2013)

    Article  Google Scholar 

  23. Rahman, A., Guikema, J.W., Markovic, Nina: Quantum interference noise near the dirac point in graphene. Phys. Rev. B 89, 235407 (2014)

    Article  Google Scholar 

  24. Yurke, B., McCall, S.L., Klauder, J.R.: SU (2) and SU (1, 1) interferometers. Phys. Rev. A 33, 4033–4054 (1986)

    Article  Google Scholar 

  25. Rozema, L.A., Mahler, D.H., Blume-Kohout, R., et al.: On the optimal choice of spin-squeezed states for detecting and characterizing a quantum process. Phys. Rev. X 4, 041025 (2015)

    Google Scholar 

  26. Eisert, J., Müller, M.P., Gogolin, C.: Quantum measurement occurrence is undecidable. Phys. Rev. Lett. 108, 260501 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61306131) and by the Science Foundation of Shaanxi Provincial Department of Education (Grant No. 14JK1682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, D., Zhao, J. The precision of Mach–Zehnder interferometer in the presence of bit-phase flip. Cluster Comput 22 (Suppl 4), 7885–7894 (2019). https://doi.org/10.1007/s10586-017-1484-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1484-1

Keywords

Navigation