Cluster Computing

, Volume 19, Issue 3, pp 1163–1182 | Cite as

Energy aware resource allocation of cloud data center: review and open issues

  • Nasrin Akhter
  • Mohamed Othman


The demand for cloud computing is increasing dramatically due to the high computational requirements of business, social, web and scientific applications. Nowadays, applications and services are hosted on the cloud in order to reduce the costs of hardware, software and maintenance. To satisfy this high demand, the number of large-scale data centers has increased, which consumes a high volume of electrical power, has a negative impact on the environment, and comes with high operational costs. In this paper, we discuss many ongoing or implemented energy aware resource allocation techniques for cloud environments. We also present a comprehensive review on the different energy aware resource allocation and selection algorithms for virtual machines in the cloud. Finally, we come up with further research issues and challenges for future cloud environments.


Virtualization Allocation of virtual machine Energy efficiency Power consumption Cloud computing 



This work was supported by the Malaysian Ministry of High Education under the Fundamental Research Grant Scheme, FRGS/02/01/12/1143/FR.


  1. 1.
    Akhter, N., Othman, M.: Energy efficient virtual machine provisioning in cloud data centers. In: The 2nd IEEE International Symposium on Telecommunication Technologies (ISTT), pp. 282–286 (2014)Google Scholar
  2. 2.
    Alahmadi, A., Che, D., Khaleel, M., Zhu, M.M., Ghodous, P.: An innovative energy-aware cloud task scheduling framework. In: 2015 IEEE 8th International Conference on Cloud Computing (CLOUD), 2015, pp. 493–500 (2015)Google Scholar
  3. 3.
    Amazon EC2 Pricing. Accessed 20 June 2013
  4. 4.
    Andrew, L.L.H., Lin, M., Wierman, A.: Optimality, fairness, and robustness in speed scaling designs. Perform. Eval. Rev. 38(1), 37–48 (2010)CrossRefGoogle Scholar
  5. 5.
    Aupy, G., Benoit, A., Robert, Y.: Energy-aware scheduling under reliability and makespan constraints. In: 19th International Conference on High Performance Computing (HiPC), 18–22 Dec, 2012, pp. 1–10 (2012)Google Scholar
  6. 6.
    Ayguade, E., Torres, J.: Creating power-aware middleware for energy-efficient data centers. ERCIM News 79, 27–28 (2009)Google Scholar
  7. 7.
    Barak, A., La’adan, O.: The MOSIX multicomputer operating system for high performance cluster computing. Future Gener. Comput. Syst. 13(45), 361–372 (1998)CrossRefGoogle Scholar
  8. 8.
    Barford, P., Crovella, M.: Generating representative Web workloads for network and server performance evaluation. SIGMETRICS Perform. Eval. Rev. 26(1), 151–160 (1998)CrossRefGoogle Scholar
  9. 9.
    Baskaran, S., Thambidurai, P.: A dynamic slack management technique for real-time system with precedence and resource constraints. In: Wyld, D., Wozniak, M., Chaki, N., Meghanathan, N., Nagamalai, D. (eds.) Advances in Computing and Information Technology. Communications in Computer and Information Science, vol. 198, pp. 365–374. Springer, Berlin (2011)Google Scholar
  10. 10.
    Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012)CrossRefGoogle Scholar
  11. 11.
    Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data centers. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), 17–20 May, 2010, pp. 826–831 (2010)Google Scholar
  12. 12.
    Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurr. Comput. Pract. Exp. 24(13), 1397–1420 (2012)Google Scholar
  13. 13.
    Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A taxonomy and survey of energy-efficient data centers and cloud computing systems, vol. 82. Adv. Comput. 2, 47–111 (2011)CrossRefGoogle Scholar
  14. 14.
    Ben-David, S., Borodin, A., Karp, R., Tardos, G., Wigderson, A.: On the power of randomization in online algorithms. In: Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, Baltimore, Maryland, USA, pp. 379–386 (1990)Google Scholar
  15. 15.
    Berral, J.L., Goiri., Nou, R., Juli, F., Guitart, J., Gavald, R., Torres, J.: Towards energy-aware scheduling in data centers using machine learning. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, pp. 215–224 (2010)Google Scholar
  16. 16.
    Beitelmal, A., Fabris, D.: Servers and data centers energy performance metrics. Energy Build. 80, 562–569 (2014)CrossRefGoogle Scholar
  17. 17.
    Bird, S., Achuthan, A., Maatallah, O.A., Hu, W., Janoyan, K., Kwasinski, A., Matthews, J., Mayhew, D., Owen, J., Marzocca, P.: Distributed (green) data centers: a new concept for energy, computing, and telecommunications. Energy Sustain. Dev. 19, 83–91 (2014)CrossRefGoogle Scholar
  18. 18.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  19. 19.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)CrossRefGoogle Scholar
  20. 20.
    Calheiros, R.N., Buyya, R., De Rose, C.A.F.: A heuristic for mapping virtual machines and links in emulation testbeds. In: International Conference on Parallel Processing, ICPP ’09, 22–25, Sept 2009, pp. 518–525 (2009)Google Scholar
  21. 21.
    Cao, J., Wu, Y., Li, M.: Energy efficient allocation of virtual machines in cloud computing environments based on demand forecast. In: Li, R., Cao, J., Bourgeois, J. (eds.) Advances in Grid and Pervasive Computing, Lecture Notes in Computer Science, vol. 7296, pp. 137–151. Springer, Berlin (2012)Google Scholar
  22. 22.
    Cardosa, M., Korupolu, M.R., Singh, A.: Shares and utilities based power consolidation in virtualized server environments. In: IFIP/IEEE International Symposium on Integrated Network Management, 2009. IM ’09, 1–5 June 2009, pp. 327–334 (2009)Google Scholar
  23. 23.
    Carli, T., Henriot, S., Cohen, J., Tomasik, J.: A packing problem approach to energy-aware load distribution in Clouds. Sustain. Comput. Informatics Syst. 9, 20–32 (2016)Google Scholar
  24. 24.
    Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Managing energy and server resources in hosting centers. SIGOPS Oper. Syst. Rev. 35(5), 103–116 (2001)CrossRefGoogle Scholar
  25. 25.
    Chen, S., Irving, S., Peng, L.: Operational cost optimization for cloud computing data centers using renewable energy. IEEE Syst. J. 6(3), 1–12 (2015)Google Scholar
  26. 26.
    Chiaraviglio, L., Matta, I.: GreenCoop: cooperative green routing with energy-efficient servers. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, Passau, Germany 2010, pp. 191–194 (2010)Google Scholar
  27. 27.
    Cordeschi, N., Shojafar, M., Baccarelli, E.: Energy-saving self-configuring networked data centers. Comput. Netw. 57(17), 3479–3491 (2013)CrossRefGoogle Scholar
  28. 28.
    Cupertino, L., Da Costa, G., Oleksiak, A., Pia, W., Pierson, J.-M., Salom, J., Sis, L., Stolf, P., Sun, H., Zilio, T.: Energy-efficient, thermal-aware modeling and simulation of data centers: the CoolEmAll approach and evaluation results. Ad Hoc Netw. 25, 535–553 (2015)CrossRefGoogle Scholar
  29. 29.
    Da Costa, G., De Assuncao, M.D., Gelas, J.-P., Georgiou, Y., Lefvre, L., Orgerie, A.-C., Pierson, J.-M., Richard, O., Sayah, A.: Multi-facet approach to reduce energy consumption in clouds and grids: the GREEN-NET framework. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, pp. 95–104. ACM, New York (2010)Google Scholar
  30. 30.
    Depoorter, V., Oró, E., Salom, J.: The location as an energy efficiency and renewable energy supply measure for data centres in Europe. Appl. Energy 140, 338–349 (2015)CrossRefGoogle Scholar
  31. 31.
    Doh, I.H., Kim, Y.J., Kim, E., Choi, J., Lee, D., Noh, S.H.: Towards greener data centers with storage class memory. Future Gener. Comput. Syst. 29(8), 1969–1980 (2013)CrossRefGoogle Scholar
  32. 32.
    Drozdowski, M.: Scheduling with Communication Delays. Scheduling for Parallel Processing. Computer Communications and Networks, pp. 209–299. Springer, London (2009)Google Scholar
  33. 33.
    Elnozahy, E.M., Kistler, M., Rajamony, R.: Energy-efficient server clusters. In: Power-Aware Computer Systems. pp. 179–197. Springer, Berlin (2003)Google Scholar
  34. 34.
    FeiFei, C., Schneider, J.G., Yun, Y., Grundy, J., Qiang, H.: An energy consumption model and analysis tool for Cloud computing environments. In: First International Workshop on Green and Sustainable Software (GREENS), 3 June 2012, pp. 45–50 (2012)Google Scholar
  35. 35.
    Feitelson, D.: Workload modeling for performance evaluation. In: Calzarossa, M., Tucci, S. (eds.) Performance Evaluation of Complex Systems: Techniques and Tools. Lecture Notes in Computer Science, vol. 2459, pp. 114–141. Springer, Berlin (2002)Google Scholar
  36. 36.
    Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I.: Above the clouds: a Berkeley view of cloud computing. Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, Rep. UCB/EECS 28 (2009)Google Scholar
  37. 37.
    Gandhi, A., Harchol-Balter, M., Das, R., Lefurgy, C.: Optimal power allocation in server farms. SIGMETRICS Perform. Eval. Rev. 37(1), 157–168 (2009)Google Scholar
  38. 38.
    Ghamkhari, M., Mohsenian-Rad, H.: Energy and performance management of green data centers: a profit maximization approach. IEEE Trans. Smart Grid 4(2), 1017–1025 (2013)CrossRefGoogle Scholar
  39. 39.
    Gomaa, M., Powell, M.D., Vijaykumar, T.N.: Heat-and-run: leveraging SMT and CMP to manage power density through the operating system. SIGARCH Comput. Archit. News 32(5), 260–270 (2004)CrossRefGoogle Scholar
  40. 40.
    Goiri, Í., Katsak, W., Le, K., Nguyen, T.D., Bianchini, R.: Parasol and greenswitch: managing datacenters powered by renewable energy. ACM SIGARCH Comput. Archit. News 41(1), 51–64 (2013)Google Scholar
  41. 41.
    Goiri, I., Katsak, W., Le, K., Nguyen, T.D., Bianchini, R.: Designing and managing datacenters powered by renewable energy. IEEE Micro 3, 8–16 (2014)CrossRefGoogle Scholar
  42. 42.
    Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research problems in data center networks. SIGCOMM Comput. Commun. Rev. 39(1), 68–73 (2008)CrossRefGoogle Scholar
  43. 43.
    Gupta, M., Singh, S.: Greening of the Internet. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 19–26 (2003)Google Scholar
  44. 44.
    Gyarmati, L., Trinh, T.A.: How can architecture help to reduce energy consumption in data center networking? In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, Passau, Germany 2010, pp. 183–186 (2010)Google Scholar
  45. 45.
    Ibrahim, S., Phan, T.-D., Carpen-Amarie, A., Chihoub, H.-E., Moise, D., Antoniu, G.: Governing energy consumption in hadoop through CPU frequency scaling: an analysis. Future Gener. Comput. Syst. 54, 219–234 (2015)CrossRefGoogle Scholar
  46. 46.
    Jung, G., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Pu, C.: A cost-sensitive adaptation engine for server consolidation of multitier applications. In: Middleware 2009. pp. 163–183. Springer, Berlin (2009)Google Scholar
  47. 47.
    Kecskemeti, G.: DISSECT-CF: a simulator to foster energy-aware scheduling in infrastructure clouds. Simulat. Model. Pract. Theory 58, 188–218 (2015)Google Scholar
  48. 48.
    Khan, S.U., Ahmad, I.: A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Trans. Parallel Distrib. Syst. 20(3), 346–360 (2009)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Khorshed, M.T., Ali, A.B.M.S., Wasimi, S.A.: A survey on gaps, threat remediation challenges and some thoughts for proactive attack detection in cloud computing. Future Gener. Comput. Syst. 28(6), 833–851 (2012)CrossRefGoogle Scholar
  50. 50.
    Kliazovich, D., Bouvry, P., Khan, S.U.: DENS: data center energy-efficient network-aware scheduling. Cluster Comput. 16(1), 65–75 (2013)CrossRefGoogle Scholar
  51. 51.
    Klingert, S., Niedermeier, F., Dupont, C., Giuliani, G., Schulze, T., de Meer, H.: Renewable Energy-Aware Data Centre Operations for Smart Cities the DC4Cities Approach. Preparation of Camera-Ready Contributions to SCITEPRESS Proceedings (2015)Google Scholar
  52. 52.
    Ko, Y.M., Cho, Y.: A distributed speed scaling and load balancing algorithm for energy efficient data centers. Perform. Eval. 79, 120–133 (2014)CrossRefGoogle Scholar
  53. 53.
    Kumar, M.R.V., Raghunathan, S.: Heterogeneity and thermal aware adaptive heuristics for energy efficient consolidation of virtual machines in Infrastructure clouds. J. Comput. Syst. Sci. 82(2), 191–212 (2015)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Kuehn, P.J., Mashaly, M.E.: Automatic energy efficiency management of data center resources by load-dependent server activation and sleep modes. Ad Hoc Netw. 25, 497–504 (2015)CrossRefGoogle Scholar
  55. 55.
    Kusic, D., Kephart, J., Hanson, J., Kandasamy, N., Jiang, G.: Power and performance management of virtualized computing environments via lookahead control. Cluster Comput. 12(1), 1–15 (2009)CrossRefGoogle Scholar
  56. 56.
    Lajevardi, B., Haapala, K.R., Junker, J.F.: Real-time monitoring and evaluation of energy efficiency and thermal management of data centers. J. Manuf. Syst. 37, 511–516 (2014)CrossRefGoogle Scholar
  57. 57.
    León, X., Navarro, L.: A Stackelberg game to derive the limits of energy savings for the allocation of data center resources. Future Gener. Comput. Syst. 29(1), 74–83 (2013)CrossRefGoogle Scholar
  58. 58.
    Li, H.: Workload dynamics on clusters and grids. J. Supercomput. 47(1), 1–20 (2009)CrossRefGoogle Scholar
  59. 59.
    Li, K.: Optimal configuration of a multicore server processor for managing the power and performance tradeoff. J. Supercomput. 61(1), 189–214 (2012)CrossRefGoogle Scholar
  60. 60.
    Li, K.: Power and performance management for parallel computations in clouds and data centers. J. Cpmput. Syst. Sci. 82(2), 174–190 (2016)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Marwah, M., Hyser, C.: Renewable and cooling aware workload management for sustainable data centers. ACM SIGMETRICS Perform. Eval. Rev. 40(1), 175–186 (2012)CrossRefGoogle Scholar
  62. 62.
    Luo, J.-P., Li, X., Chen, M.-R.: Hybrid shuffled frog leaping algorithm for energy-efficient dynamic consolidation of virtual machines in cloud data centers. Expert Syst. Appl. 41(13), 5804–5816 (2014)CrossRefGoogle Scholar
  63. 63.
    Luo, L., Wu, W., Tsai, W., Di, D., Zhang, F.: Simulation of power consumption of cloud data centers. Simul. Model. Pract. Theory 39, 152–171 (2013)CrossRefGoogle Scholar
  64. 64.
    Meisner, D., Gold, B.T., Wenisch, T.F.: PowerNap: eliminating server idle power. SIGPLAN Not. 44(3), 205–216 (2009)CrossRefGoogle Scholar
  65. 65.
    Minas, L., Ellison, B.: Energy Efficiency for Information Technology: How to Reduce Power Consumption In Servers and Data Centers. Intel Press, Hillsboro (2009)Google Scholar
  66. 66.
    Moore, J.D., Chase, J.S., Ranganathan, P., Sharma, R.K.: Making Scheduling cool: temperature-aware workload placement in data centers. In: USENIX Annual Technical Conference, General Track, pp. 61–75 (2005)Google Scholar
  67. 67.
    Naha, R.K., Othman, M.: Optimized load balancing for efficient resource provisioning in the Cloud. In: The 2nd IEEE International Symposium on Telecommunication Technologies (ISTT), pp. 382–385 (2014)Google Scholar
  68. 68.
    Naha, R.K., Othman, M.: Brokering and load-balancing mechanism in the cloud revisited. IETE Tech. Rev. 31(4), 271–276 (2014)CrossRefGoogle Scholar
  69. 69.
    Naha, R.K., Othman, M., Akhter, N.: Evaluation of cloud brokering algorithms in cloud based data center. Far East J. Electron. Commun. 15(2), 85–98 (2015)Google Scholar
  70. 70.
    Nathuji, R., Schwan, K.: VirtualPower: coordinated power management in virtualized enterprise systems. SIGOPS Oper. Syst. Rev. 41(6), 265–278 (2007)CrossRefGoogle Scholar
  71. 71.
    Neugebauer, R., McAuley, D.: Energy is just another resource: energy accounting and energy pricing in the Nemesis OS. In: Proceedings of the Eighth Workshop on Hot Topics in Operating Systems,, 20–22 May, 2001, pp. 67–72 (2001)Google Scholar
  72. 72.
    Newman, P., Kotonya, G.: A resource-aware framework for resource-constrained service-oriented systems. Future Gener. Comput. Syst. 47, 161–175 (2015)CrossRefGoogle Scholar
  73. 73.
    Nguyen, K.-K., Cheriet, M., Lemay, M., Savoie, M., Ho, B.: Powering a data center network via renewable energy: a green testbed. IEEE Internet Comput. 17(1), 40–49 (2013)CrossRefGoogle Scholar
  74. 74.
    Nikolopoulos, D.S.: Green building blocks-software stacks for energy-efficient clusters and data centers. ERCIM News 79, 29–30 (2009)Google Scholar
  75. 75.
    Oró, E., Depoorter, V., Pflugradt, N., Salom, J.: Overview of direct air free cooling and thermal energy storage potential energy savings in data centres. Appl. Therm. Eng. 85, 100–110 (2015)CrossRefGoogle Scholar
  76. 76.
    Panarello, C., Lombardo, A., Schembra, G., Chiaraviglio, L., Mellia, M.: Energy saving and network performance: a trade-off approach. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, pp. 41–50 (2010)Google Scholar
  77. 77.
    Pinheiro, E., Bianchini, R.: Nomad: a scalable operating system for clusters of uni- and multiprocessors. In: 1st IEEE Computer Society International Workshop on Cluster Computing Proceedings, pp. 247–254 (1999)Google Scholar
  78. 78.
    Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.: Load balancing and unbalancing for power and performance in cluster-based systems. In: Workshop on Compilers and Operating Systems for Low Power 2001, Barcelona, Spain, pp. 182-195 (2001)Google Scholar
  79. 79.
    Quan, D.M., Mezza, F., Sannenli, D., Giafreda, R.: T-Alloc: a practical energy efficient resource allocation algorithm for traditional data centers. Future Gener. Comput. Syst. 28(5), 791–800 (2012)CrossRefGoogle Scholar
  80. 80.
    Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No power struggles: coordinated multi-level power management for the data center. SIGOPS Oper. Syst. Rev. 42(2), 48–59 (2008)CrossRefGoogle Scholar
  81. 81.
    Ranganathan, P., Leech, P., Irwin, D., Chase, J.: Ensemble-level power management for dense blade servers. SIGARCH Comput. Archit. News 34(2), 66–77 (2006)CrossRefGoogle Scholar
  82. 82.
    Raycroft, P., Jansen, R., Jarus, M., Brenner, P.R.: Performance bounded energy efficient virtual machine allocation in the global cloud. Sustain. Comput. Informatics Syst. 4(1), 1–9 (2014)CrossRefGoogle Scholar
  83. 83.
    Rethinagiri, S.K., Palomar, O., Sobe, A., Yalcin, G., Knauth, T., Gil, R.T., Prieto, P., Schneega, M., Cristal, A., Unsal, O.: ParaDIME: Parallel distributed infrastructure for minimization of energy for data centers. Microprocess. Microsyst. 39(8), 1174–1189 (2015)CrossRefGoogle Scholar
  84. 84.
    Rodero, I., Viswanathan, H., Lee, E., Gamell, M., Pompili, D., Parashar, M.: Energy-efficient thermal-aware autonomic management of virtualized HPC cloud infrastructure. J. Grid Comput. 10(3), 447–473 (2012)CrossRefGoogle Scholar
  85. 85.
    Rodero-Merino, L., Vaquero, L.M., Gil, V., Galn, F., Fontn, J., Montero, R.S., Llorente, I.M.: From infrastructure delivery to service management in clouds. Future Gener. Comput. Syst. 26(8), 1226–1240 (2010)CrossRefGoogle Scholar
  86. 86.
    Sharma, R.K., Bash, C.E., Patel, C.D., Friedrich, R.J., Chase, J.S.: Balance of power: dynamic thermal management for Internet data centers. IEEE Internet Comput. 9(1), 42–49 (2005)CrossRefGoogle Scholar
  87. 87.
    Sharma, M., Arunachalam, K., Sharma, D.: Analyzing the data center efficiency by using PUE to make data centers more energy efficient by reducing the electrical consumption and exploring new strategies. Proc. Comput. Sci. 48, 142–148 (2015)CrossRefGoogle Scholar
  88. 88.
    Sheikh, H.F., Ahmad, I.: Simultaneous optimization of performance, energy and temperature for DAG scheduling in multi-core processors. In: International Green Computing Conference (IGCC), 4–8 June, 2012, pp. 1–6 (2012)Google Scholar
  89. 89.
    Webb, M.: SMART 2020: enabling the low carbon economy in the information age, a report by The Climate Group on behalf of the Global eSustainability Initiative (GeSI). Global eSustainability Initiative (GeSI) Technical report (2008)Google Scholar
  90. 90.
    Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Proceedings of the Conference on Power Aware Computing and Systems. USENIX Association, Berkeley (2008)Google Scholar
  91. 91.
    Sun, H., Cao, Y., Hsu, W.-J.: Non-clairvoyant speed scaling for batched parallel jobs on multiprocessors. In: Paper presented at the Proceedings of the 6th ACM Conference on Computing Frontiers, Ischia, Italy (2009)Google Scholar
  92. 92.
    Sun, H., Stolf, P., Pierson, J.-M., Da Costa, G.: Energy-efficient and thermal-aware resource management for heterogeneous datacenters. Sustain. Comput. Informatics Syst. 4(4), 292–306 (2014)CrossRefGoogle Scholar
  93. 93.
    Sullivan, D.G., Seltzer, M.I.: Isolation with flexibility: a resource management framework for central servers. In: Proceedings of the USENIX Annual Technical Conference, pp. 337–350 (2000)Google Scholar
  94. 94.
    Uddin, M., Rahman, A.A.: Energy efficiency and low carbon enabler green IT framework for data centers considering green metrics. Renew. Sustain. Energy Rev. 16(6), 4078–4094 (2012)CrossRefGoogle Scholar
  95. 95.
    Vasi, N., Kosti, D.: Energy-aware traffic engineering. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking 2010, pp. 169–178 (2010)Google Scholar
  96. 96.
    Verma, A., Dasgupta, G., Nayak, T.K., De, P., Kothari, R.: Server workload analysis for power minimization using consolidation. In: Proceedings of the 2009 Conference on USENIX Annual Technical Conference, pp. 28–28. USENIX Association, Berkeley (2009)Google Scholar
  97. 97.
    Von Laszewski, G., Wang, L., Younge, A.J., He, X.: Power-aware scheduling of virtual machines in dvfs-enabled clusters. In: CLUSTER’09. IEEE International Conference on 2009 Cluster Computing and Workshops, pp. 1–10 (2009)Google Scholar
  98. 98.
    Vrbsky, S.V., Galloway, M., Carr, R., Nori, R., Grubic, D.: Decreasing power consumption with energy efficient data aware strategies. Future Gener. Comput. Syst. 29(5), 1152–1163 (2013)CrossRefGoogle Scholar
  99. 99.
    Wei, L., Yuguang, D., Wei, D.: An energy efficient clustering-based scheduling algorithm for parallel tasks on homogeneous DVS-enabled clusters. In: 2012 IEEE 16th International Conference onComputer Supported Cooperative Work in Design (CSCWD), 23–25 May 2012, pp. 575–582 (2012)Google Scholar
  100. 100.
    Wolke, A., Tsend-Ayush, B., Pfeiffer, C., Bichler, M.: More than bin packing: dynamic resource allocation strategies in cloud data centers. Inf. Syst. 52, 83–95 (2015)CrossRefGoogle Scholar
  101. 101.
    Young Choon, L., Zomaya, A.Y.: Energy conscious scheduling for distributed computing systems under different operating conditions. EEE Trans. Parallel Distrib. Syst. 22(8), 1374–1381 (2011)Google Scholar
  102. 102.
    Zhang, Q., Metri, G., Raghavan, S., Shi, W.: RESCUE: An energy-aware scheduler for cloud environments. Sustain. Comput. Informatics Syst. 4(4), 215–224 (2014)CrossRefGoogle Scholar
  103. 103.
    Zhang, X., Lu, J.-J., Qin, X., Zhao, X.-N.: A high-level energy consumption model for heterogeneous data centers. Simul. Model. Pract. Theory 39, 41–55 (2013)CrossRefGoogle Scholar
  104. 104.
    Zheng, X., Cai, Y.: Energy-aware load dispatching in geographically located Internet data centers. Sustain. Comput. Informatics Syst. 1(4), 275–285 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Communication Technology and NetworkUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations