Cluster Computing

, Volume 19, Issue 1, pp 293–300 | Cite as

Dynamic multimedia transmission control virtual machine using weighted Round-Robin

  • Sanghyun Park
  • Jisue Kim
  • Gemoh Maliva Tihfon
  • Ho-Yong Ryu
  • Jinsul Kim


This paper addresses the problem caused by the large amount of traffic generated and dynamically changing traffic patterns and Round-Robin scheduling algorithm applied Weighted to provide the best service to the user requests. Currently the network has a lot of parts, but many problems need to be addressed and changed rapidly. We virtualize the existing network equipment using Openstack to propose a scheme for improving the quality of multimedia transmission services via a scheduling algorithm and contents delivery network techniques. The results of this study demonstrates that a large amount of multimedia that can be used as a future of excellence in real time.


Network function virtualization CDN Weighted Round-Robin scheduling OpenStack  Multimedia transmission 



This research was supported by the IT R&D program of MSIP(Ministry of Science, ICT and Future Planning)/NIPA(National IT Industry Promotion Agency). [12221-14-1001, Next Generation Network Computing Platform Testbed].


  1. 1.
    Buyya, R., Beloglazov, A., and Abawajy, J.: ’Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges. arXiv:1006.0308 (2010)
  2. 2.
    Bi, J., et al.: Dynamic provisioning modeling for virtualized multi-tier applications in cloud data center. In: Cloud Computing (CLOUD), pp. 370–377 (2010)Google Scholar
  3. 3.
    Beloglazov, A. and Buyya, R.: Energy efficient allocation of virtual machines in cloud data centers. In: Cluster, Cloud and Grid Computing (CCGrid), pp. 577–578 (2010)Google Scholar
  4. 4.
    Beloglazov, A. and Buyya, R.: Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In: Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-Science, vol. 4 (2010)Google Scholar
  5. 5.
    Al-Fares, M., et al.: Hedera: dynamic flow scheduling for data center networks. In: NSDI, vol. 10, pp. 19–19 (2010)Google Scholar
  6. 6.
    Ahn, J., et al.: Dynamic virtual machine scheduling in clouds for architectural shared resources. In: Proceedings of the USENIX Workshop on Hot Topics in Cloud Computing (HotCloud) (2012)Google Scholar
  7. 7.
    Kliazovich, D., Bouvry, P., Ullah Khan, S.: DENS: data center energy-efficient network-aware scheduling. Cluster Comput. 16(1), 65–75 (2013)Google Scholar
  8. 8.
    Hu, J., et al.: A scheduling strategy on load balancing of virtual machine resources in cloud computing environment. In: 2010 Third International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), pp. 89–96. IEEE (2010)Google Scholar
  9. 9.
    Anand, P., Goswami, P.: Survey of cloud sim and virtual machine in cloud computing. IJRIT Int. J. Res. Inf. Technol. 1(7), 186–190 (2014)Google Scholar
  10. 10.
    Kwak, J.-Y., Nam, J.-S., Kim, D.-H.: A modified dynamic weighted round robin cell scheduling algorithm. ETRI J. 24(5), 360–372 (2002)CrossRefGoogle Scholar
  11. 11.
    Yamada, H.: \({{\rm OPNET}^{\rm TM}}\) modeling of an IP router with scheduling algorithms to implement differentiated services. Proceedings of OPNETWORK, vol. 99 (2002)Google Scholar
  12. 12.
    Mardini, W., Alfool, M.A.: Modified WRR scheduling algorithm for WiMAX networks. Netw. Protoc. Algorithms 3(2), 24–53 (2011)Google Scholar
  13. 13.
    Zhong, H., Tao, K. and Zhang, X.: An approach to optimized resource scheduling algorithm for open-source cloud systems. In: ChinaGrid Conference (ChinaGrid), pp. 124–129 (2010)Google Scholar
  14. 14.
    Sefraoui, O., Aissaoui, M., Eleuldj, M.: OpenStack: toward an open-source solution for cloud computing. Int. J. Comput. Appl. 55(3), 38–42 (2012)Google Scholar
  15. 15.
    Wuhib, F., Stadler, R. and Lindgren, H.: Dynamic resource allocation with management objectives–Implementation for an OpenStack cloud. In: Network and Service Management (cnsm), pp. 309–315 (2012)Google Scholar
  16. 16.
    Yang, W., et al.: CloudSimNFV: modeling and simulation of energy-efficient NFV in cloud data centers. arXiv:1509.05875 (2015)
  17. 17.
    Vakali, A., Pallis, G.: Content delivery networks: status and trends. Internet Comput. 7(6), 68–74 (2003)CrossRefGoogle Scholar
  18. 18.
    Kim, J. et al.: An efficient multimedia transmission control methodology based on NFV. In: 2015 5th International Conference on IT Convergence and Security (ICITCS), pp. 1–4. IEEE (2015)Google Scholar
  19. 19.
    Lu, Z., Wang, Y., Yang, Y.R.: An analysis and comparison of CDN-P2P-hybrid content delivery system and model. J. Commun. 7(3), 232–245 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Um, T.-W., et al.: Dynamic resource allocation and scheduling for cloud-based virtual content delivery networks. ETRI J. 36(2), 197–205 (2014)CrossRefGoogle Scholar
  21. 21.
    Lu, Z., et al.: TRRR: A tree-round-robin-replica content replication algorithm for improving fast replica in content delivery networks. In: 4th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM’08, pp. 1–4. IEEE (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sanghyun Park
    • 1
  • Jisue Kim
    • 1
  • Gemoh Maliva Tihfon
    • 1
  • Ho-Yong Ryu
    • 2
  • Jinsul Kim
    • 1
  1. 1.School of Electronics and Computer EngineeringChonnam National UniversityGwangjuKorea
  2. 2.Smart Network Research DepartmentElectronics and Telecommunications Research InstituteDaejeonKorea

Personalised recommendations