Cluster Computing

, Volume 18, Issue 4, pp 1379–1397 | Cite as

Holistic multiobjective planning of datacenters powered by renewable energy

  • Sergio Nesmachnow
  • Cristian Perfumo
  • Íñigo Goiri


Energy efficiency is a major concern to datacenter operators, because the large amounts of energy used by parallel computing infrastructures increases costs and affects the electricity grid. Datacenter power consumption can be reduced by applying intelligent control techniques to dynamically adjust power demand, but this is hampered by conflicting objectives. For instance, the workload can be controlled to adjust power, but at the expense of service quality. Or, the cooling infrastructure demand can be manipulated without affecting workloads, but at the risk of shifting the datacenter temperature outside the acceptable limits. This paper proposes a multiobjective, evolutionary approach to solving the problem of energy-aware task scheduling in datacenters. Our approach takes into account three problem objectives (power consumption, temperature, and quality of service) when both computing and cooling infrastructures are holistically controlled. We report the two best solutions to each of these problem objectives, as well as the selected trade-off solutions between them.


Energy efficiency Clusters and datacenters Control and planning 



The work of Sergio Nesmachnow is partly supported by ANII and PEDECIBA, Uruguay. The work of Cristian Perfumo received funding from ARENA, the Australian Renewable Energy Agency. The views expressed herein are not necessarily the views of the Australian Government, and the Australian Government does not accept responsibility for any information or advice contained herein.


  1. 1.
    Ahmad, I., Ranka, S.: Handbook of Energy-Aware and Green Computing. Chapman & Hall, Boca Raton (2012)Google Scholar
  2. 2.
    Aikema, D., Simmonds, R., Zareipour, H.: Datacenters in the ancillary services market. In: International Green Computing Conference, pp. 1–10 (2012)Google Scholar
  3. 3.
    ASHRAE: Thermal guidelines for data processing environments–expanded data center classes and usage guidance. Whitepaper prepared by ASHRAE Technical Committee. 9(9) (2011)Google Scholar
  4. 4.
    Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press (1997)Google Scholar
  5. 5.
    Barroso, L.A., Hölzle, U.: The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comp. Archit. 4(1), 1–108 (2009)CrossRefGoogle Scholar
  6. 6.
    Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, New York (2002)CrossRefGoogle Scholar
  7. 7.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)Google Scholar
  8. 8.
    Dorronsoro, B., Nesmachnow, S., Taheri, J., Zomaya, A., Talbi, E.G., Bouvry, P.: A hierarchical approach for energy-efficient scheduling of large workloads in multicore distributed systems. Sustain. Comput. 4(4), 252–261 (2014)Google Scholar
  9. 9.
    Ghamkhari, M., Mohsenian-Rad, H.: Data centers to offer ancillary services. In: 3\(^{rd}\) International Conference on Smart Grid Communications. pp. 436–441 (2012)Google Scholar
  10. 10.
    Goiri, I., Katsak, W., Le, K., Nguyen, T., Bianchini, R.: Parasol and GreenSwitch: managing datacenters powered by renewable energy. In: 18\(^{th}\) International Conference on Architectural Support for Programming Languages and Operating Systems. pp. 51–64 (2013)Google Scholar
  11. 11.
    Goiri, I., Le, K., Haque, M., Beauchea, R., Nguyen, T., Guitart, J., Torres, J., Bianchini, R.: GreenSlot: scheduling energy consumption in green datacenters. In: International Conference for High Performance Computing, Networking, Storage and Analysis (2011)Google Scholar
  12. 12.
    Goiri, I., Le, K., Nguyen, T., Guitart, J., Torres, J., Bianchini, R.: GreenHadoop: leveraging green energy in data-processing frameworks. In: 7\(^{th}\) European Conference on Computer Systems. pp. 57–70 (2012)Google Scholar
  13. 13.
    Goodwin, G., Graebe, S., Salgado, M.: Control System Design, 1st edn. Prentice Hall PTR, Upper Saddle River (2000)Google Scholar
  14. 14.
    Iturriaga, S., Garca, S., Nesmachnow, S.: An empirical study of the robustness of energy-aware schedulers for high performance computing systems under uncertainty. In: High Performance Computing. Communications in Computer and Information Science vol. 485, pp. 143–157. Springer, Berlin (2014). doi: 10.1007/978-3-662-45483-1_11
  15. 15.
    Iturriaga, S., Nesmachnow, S., Dorronsoro, B., Bouvry, P.: Energy efficient scheduling in heterogeneous systems with a parallel multiobjective local search. Comput. Inform. J. 32(2), 273–294 (2013)MathSciNetGoogle Scholar
  16. 16.
    Khan, S., Ahmad, I.: A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Trans. Parallel Distrib. Syst. 20, 346–360 (2009)CrossRefGoogle Scholar
  17. 17.
    Kim, J.K., Siegel, H., Maciejewski, A., Eigenmann, R.: Dynamic resource management in energy constrained heterogeneous computing systems using voltage scaling. IEEE Trans. Parallel Distrib. Syst. 19, 1445–1457 (2008)CrossRefGoogle Scholar
  18. 18.
    Koomey, J.: Growth in Data Center Electricity Use 2005–2010. Analytic Press, Oakland (2011)Google Scholar
  19. 19.
    Krioukov, A., Alspaugh, S., Mohan, P., Dawson, S., Culler, D., Katz, R.: Design and evaluation of an energy agile computing cluster. Tech. Rep. UCB/EECS-2012-13, University of California, Berkeley (2012)Google Scholar
  20. 20.
    Kumar, A., Shang, L., Peh, L.S., Jha, N.K.: Hybdtm: a coordinated hardware-software approach for dynamic thermal management. In: 43rd ACM/IEEE Design Automation Conference. pp. 548–553 (2006)Google Scholar
  21. 21.
    Lanoo, B.: Overview of ICT energy consumption. Tech. rep, Network of excellence in Internet science (2013)Google Scholar
  22. 22.
    Le, K., Bianchini, R., Zhang, J., Jaluria, Y., Meng, J., Nguyen, T.: Reducing electricity cost through virtual machine placement in high performance computing clouds. In: International Conference for High Performance Computing, Networking, Storage and Analysis (2011)Google Scholar
  23. 23.
    Lee, Y., Zomaya, A.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22, 1374–1381 (2011)CrossRefGoogle Scholar
  24. 24.
    Lennart, L.: System Identification: Theory for the User. Prentice Hall PTR, Upper Saddle River (1999)Google Scholar
  25. 25.
    Li, Y., Liu, Y., Qian, D.: A heuristic energy-aware scheduling algorithm for heterogeneous clusters. In: 15\(^{th}\) International Conference on Parallel and Distributed Systems. pp. 407–413 (2009)Google Scholar
  26. 26.
    Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Marwah, M., Hyser, C.: Renewable and cooling aware workload management for sustainable data centers. Perform. Eval. Rev. 40(1), 175–186 (2012)CrossRefGoogle Scholar
  27. 27.
    Luo, P., Lü, K., Shi, Z.: A revisit of fast greedy heuristics for mapping a class of independent tasks onto heterogeneous computing systems. J. Parallel Distrib. Comput. 67(6), 695–714 (2007)CrossRefGoogle Scholar
  28. 28.
    Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y., Talbi, E., Zomaya, A., Tuyttens, D.: A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. J. Parallel Distribut. Comput. 71, 1497–1508 (2011)CrossRefGoogle Scholar
  29. 29.
    Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República. Rev. de la Asociación de Ing. del Urug. 61, 12–15 (2010). (text in Spanish)Google Scholar
  30. 30.
    Nesmachnow, S., Dorronsoro, B., Pecero, J.E., Bouvry, P.: Energy-aware scheduling on multicore heterogeneous grid computing systems. J. Grid Comput. 11(4), 653–680 (2013)CrossRefGoogle Scholar
  31. 31.
    Nesmachnow, S., Perfumo, C., Goiri, I.: Controlling datacenter power consumption while maintaining temperature and QoS levels. In: 3\(^{rd}\) IEEE International Conference on Cloud Networking. pp. 242–247 (2014)Google Scholar
  32. 32.
    Pinel, F., Dorronsoro, B., Pecero, J., Bouvry, P., Khan, S.: A two-phase heuristic for the energy-efficient scheduling of independent tasks on computational grids. Clust. Comput. 16(3), 421–433 (2013)CrossRefGoogle Scholar
  33. 33.
    Powerwater: electricity prices in australia (2014). Accesed Dec 2014
  34. 34.
    Wang, R., Kandasamy, N., Nwankpa, C., Kaeli, D.R.: Datacenters as controllable load resources in the electricity market. In: IEEE 33\(^{rd}\) International Conference on Distributed Computing Systems. pp. 176–185 (2013)Google Scholar
  35. 35.
    West, S.R., Rowe, D., Sayeef, S., Berry, A.: Short-term irradiance forecasting using skycams: motivation and development. Sol. Energy 110, 188–207 (2014)CrossRefGoogle Scholar
  36. 36.
    World Energy Outlook. International Energy Agency. Organisation for Economic Co-operation and Development, Paris (2006)Google Scholar
  37. 37.
    Zomaya, A.Y., Lee, Y.C.: Energy Efficient Distributed Computing Systems. Wiley, Hoboken (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sergio Nesmachnow
    • 1
  • Cristian Perfumo
    • 2
  • Íñigo Goiri
    • 3
  1. 1.Universidad de la RepúblicaMontevideoUruguay
  2. 2.CSIRO EnergyNewcastleAustralia
  3. 3.Rutgers UniversityNew BrunswickUSA

Personalised recommendations