Cluster Computing

, Volume 18, Issue 3, pp 1263–1283 | Cite as

An intelligent clustering scheme for distributed intrusion detection in vehicular cloud computing

  • Neeraj Kumar
  • Jaskaran Preet Singh
  • Rasmeet S. Bali
  • Sudip Misra
  • Sana Ullah


In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10  % in detection rate of malicious nodes when compared with the existing schemes.


Vehicular cloud Clustering Multimedia healthcare applications Intrusion detection Learning 



We are thankful to all the anonymous reviewers for their valuable suggestions and comments which help us to improve the overall content, quality, and presentation of the paper.


  1. 1.
    Zeadally, S., Hunt, R., Chen, Y.S., Irwin, A., Hassan, A.: Vehicular ad hoc networks (VANETS): status, results, and challenges. Telecommun. Syst. 50(4), 217–241 (2012)CrossRefGoogle Scholar
  2. 2.
    Kenney, J.B.: Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE. 99(7), 1162–1182 (2011)CrossRefGoogle Scholar
  3. 3.
    Schoch, E., Kargl, F., Weber, M., Leinmuller, T.: Communication patterns in VANETs. IEEE Commun. Mag. 46(11), 119–125 (2008)CrossRefGoogle Scholar
  4. 4.
    Jakubiak, J., Koucheryavy, Y.: State of the art and research challenges for VANETs. In: 5th IEEE Consumer Communications and Networking Conference, CCNC 2008, pp. 912–916 (2008)Google Scholar
  5. 5.
    Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R., Cosenza, S.: Vehicular communication systems: enabling technologies, applications, and future outlook on intelligent transportation. IEEE Commun. Mag. 47(11), 84–95 (2009)CrossRefGoogle Scholar
  6. 6.
    Eltoweissy, M., Olariu, S., Younis, M.: Towards autonomous vehicular clouds. Ad Hoc Netw. 37(4), 1–16 (2010)CrossRefGoogle Scholar
  7. 7.
    Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M.: A survey of intrusion detection techniques in cloud. J Netw. Comput. Appl. 36(1), 42–57 (2013)CrossRefGoogle Scholar
  8. 8.
    Doukas, C., Pliakas, T., Maglogiannis, I.: Mobile healthcare information management utilizing cloud computing and android OS. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference, IEEE, pp. 1037–1040 (2010)Google Scholar
  9. 9.
    Nadeem, T., Shankar, P., Iftode, L.: A comparative study of data dissemination models for VANETs. In: 3rd IEEE Annual International Conference on Mobile and Ubiquitous Systems, pp. 1–10. (2006)Google Scholar
  10. 10.
    Lin, X., Lu, R., Zhang, C., Zhu, H., Ho, P.H., Shen, X.: Security in vehicular ad hoc networks. IEEE Commun. Mag. 46(4), 88–95 (2008)CrossRefGoogle Scholar
  11. 11.
    Sumra, I.A., Ahmad, I., Hasbullah, H., Bin Ab Manan, J.L.: Classes of attacks in VANET. In: 2011 IEEE Saudi International Electronics, Communications and Photonics Conference (SIECPC), pp. 1–5(2011)Google Scholar
  12. 12.
    Isaac, J.T., Zeadally, S., Cmara, J.S.: Security attacks and solutions for vehicular ad hoc networks. IET Commun. 4(7), 894–903 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Uzcategui, R., Acosta-Marum, G.: Wave: a tutorial. IEEE Commun. Mag. 47(5), 126–133 (2009)CrossRefGoogle Scholar
  14. 14.
    Yan, G., Olariu, S., Weigle, M.C.: Providing VANET security through active position detection. Comput. Commun. 31(12), 2883–2897 (2008)CrossRefGoogle Scholar
  15. 15.
    Ghosh, M., Varghese, A., Kherani, A.A., Gupta, A.: Distributed misbehavior detection in VANETs. IEEE Wireless Communications and Networking Conference, WCNC 2009, 1–6 (2009)Google Scholar
  16. 16.
    Ruj, S., Cavenaghi, M.A., Huang, Z., Nayak, A., Stojmenovic, I.: On data-centric misbehavior detection in VANETs. In: IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5 (2011)Google Scholar
  17. 17.
    Bibmeyer, N., Stresing, C., Bayarou, K.M.: Intrusion detection in vanets through verification of vehicle movement data. In: IEEE Vehicular Networking Conference (VNC), pp. 166–173 (2010)Google Scholar
  18. 18.
    Vieira, K., Schulter, A., Westphall, C., Westphall, C.M.: Intrusion detection for grid and cloud computing. IT Prof. 12(4), 38–43 (2010)CrossRefGoogle Scholar
  19. 19.
    Dastjerdi, A.V., Bakar, K.A., Tabatabaei, S.G.H.: Distributed intrusion detection in clouds using mobile agents. In: Third IEEE International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP’09), pp. 175–180 (2009)Google Scholar
  20. 20.
    Mazzariello, C., Bifulco, R., Canonico, R.: Integrating a network ids into an open source cloud computing environment. In: 2010 IEEE Sixth International Conference on Information Assurance and Security (IAS), pp. 265–270 (2010)Google Scholar
  21. 21.
    Li, F., Wang, Y.: Routing in vehicular ad hoc networks: a survey. IEEE Veh Technol. Mag. 2(2), 12–22 (2007)CrossRefGoogle Scholar
  22. 22.
    Bali, R.S., Kumar, N., Rodrigues, J.J.: Clustering in vehicular ad hoc networks: taxonomy, challenges and solutions. Veh. Commun. 1(3), 134–152 (2014)CrossRefGoogle Scholar
  23. 23.
    Almalag, M.S., Weigle, M.C.: Using traffic flow for cluster formation in vehicular ad-hoc networks. In: 35th IEEE Conference on Local Computer Networks (LCN), pp. 631–636 (2010)Google Scholar
  24. 24.
    Souza, E., Nikolaidis, I., Gburzynski, P.: A new aggregate local mobility (ALM) clustering algorithm for VANETs. In: 2010 IEEE International Conference on Communications (ICC), pp. 1–5 (2010)Google Scholar
  25. 25.
    Qian, Y., Moayeri, N.: Design of secure and application-oriented VANETs. IEEE Veh. Technol. Conf. VTC Spring 2008, 2794–2799 (2008)Google Scholar
  26. 26.
    Wasef, A., Rongxing, L., Xiaodong, L., Xuemin, S.: Complementing public key infrastructure to secure vehicular ad hoc networks. IEEE Wirel. Commun. 17(5), 22–28 (2010)CrossRefGoogle Scholar
  27. 27.
    Dror, E., Avin, C., Lotker, Z.: Fast randomized algorithm for hierarchical clustering in vehicular ad-hoc networks. In: The 10th IEEE IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pp. 1–8 (2011)Google Scholar
  28. 28.
    Rawshdeh, Z.Y., Mahmud, S.M.: Toward strongley connected clustering structure in vehicular ad hoc networks. In: 70th IEEE Vehicular Technology Conference Fall (VTC 2009-Fall), pp. 1–5 (2009)Google Scholar
  29. 29.
    Wang, Z., Liu, L., Zhou, M., Ansari, N.: A position-based clustering technique for ad hoc intervehicle communication. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 38(2), 201–208 (2008)CrossRefGoogle Scholar
  30. 30.
    Kayis, O., Acarman, T.: Clustering formation for inter-vehicle communication. IEEE Intell. Transp. Syst. Conf. ITSC 2007, 636–641 (2007)Google Scholar
  31. 31.
    Mafra, P.M., Fraga, J.S., Santin, A.O.: Algorithms for a distributed IDS in MANETs. J. Comput. Syst. Sci. 80(3), 554–570 (2014)CrossRefMATHGoogle Scholar
  32. 32.
    Zhang, D., Yeo, C.K.: Distributed court system for intrusion detection in mobile ad hoc networks. Comput. & Secur. 30(8), 555–570 (2011)CrossRefGoogle Scholar
  33. 33.
    Dietzel, S., Petit, J., Heijenk, G., Kargl, F.: Graph-based metrics for insider attack detection in VANET multihop data dissemination protocols. IEEE Trans. Veh. Technol. 62(4), 1505–1518 (2013)CrossRefGoogle Scholar
  34. 34.
    Gazdar, T., Benslimane, A., Rachedi, A., Belghith, A.: A trust-based architecture for managing certificates in vehicular ad hoc networks. In: IEEE International Conference on Communications and Information Technology (ICCIT-2012), pp. 180–185 (2012)Google Scholar
  35. 35.
    Lauf, A.P., Peters, R.A., Robinson, W.H.: A distributed intrusion detection system for resource-constrained devices in ad-hoc networks. Ad Hoc Netw. 8(3), 253–266 (2010)CrossRefGoogle Scholar
  36. 36.
    Marchang, N., Datta, R.: Collaborative techniques for intrusion detection in mobile ad-hoc networks. Ad Hoc Netw. 6(4), 508–523 (2008)CrossRefGoogle Scholar
  37. 37.
    Razak, S.A., Furnell, S.M., Clarke, N.L., Brooke, P.J.: Friend-assisted intrusion detection and response mechanisms for mobile ad hoc networks. Ad Hoc Netw. 6(7), 1151–1167 (2008)CrossRefGoogle Scholar
  38. 38.
    Kumar, N., Misra, S., Rodrigues, J.P.C., Obaidat, M.S.: Networks of learning automata: a performance analysis study. IEEE Wirel. Commun. Mag. 21(6), 41–47 (2014)CrossRefGoogle Scholar
  39. 39.
    Misra, S., Krishna, P.V., Saritha, V.: LACAV: an energy efficient channel assignment mechanism for vehicular ad hoc networks. J. Supercomput. 62(3), 1241–1262 (2012)CrossRefGoogle Scholar
  40. 40.
    Kumar, N., Kim, J.: ELACCA: efficient learning automata based cell clustering algorithm for wireless sensor networks. Wirel. Person. Commun. 73(4), 1495–1512 (2013)CrossRefGoogle Scholar
  41. 41.
    Kumar, N., Chilamkurti, N., Rodrigues, J.P.C.: Learning automata-based opportunistic data aggregation and forwarding scheme for alert generation in vehicular ad hoc networks. Comput. Commun. 39(1), 22–32 (2014)CrossRefGoogle Scholar
  42. 42.
    Kumar, N., Chilamkurti, N., Park, J.H.: ALCA: agent learning based clustering algorithm in vehicular adhoc networks. Person. Ubiquitous Comput. 18(8), 1683–1692 (2013)CrossRefGoogle Scholar
  43. 43.
    Kumar, N., Misra, S., Obaidat, M.S.: Collaborative learning automata-based routing for rescue operations in dense urban regions using vehicular sensor networks. IEEE Syst. J. doi: 10.1109/JSYST.2014.2335451
  44. 44.
    Kumar, N., Lee, J.H., Rodrigues, J.P.C.: Intelligent mobile video surveillance system as a bayesian coalition game in vehicular sensor networks: learning automata approach. IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2354372 (2014)
  45. 45.
    Kumar, N., Lee, J.H.: Collaborative learning automata based channel assignment with topology preservation scheme for wireless mesh networks under QoS constraints. IEEE Syst. J. doi: 10.1109/JSYST.2014.2355113
  46. 46.
    Kumar, N., Chilamkurti, N.: Collaborative trust aware intelligent intrusion detection in VANETs. Comput. Electr. Eng. 40(6), 1981–1996 (2014)CrossRefGoogle Scholar
  47. 47.
    Kumar, N., Chilamkurti, N., Misra, S.C.: Bayesian coalition game for internet of things: an ambient intelligence approach. IEEE Commun. Mag. 53(1), 48–55 (2015)CrossRefGoogle Scholar
  48. 48.
    Kumar, N., Lin, C.C.: Reliable multicast as a bayesian coalition game for a non-stationary environment in vehicular ad hoc networks: a learning automata based approach. Int. J. Adhoc Ubiquitous Comput. (In Press)Google Scholar
  49. 49.
    Kumar, N., Iqbal, R., Misra, S., Rodrigues, J.J.P.C.: Bayesian coalition game for contention-aware reliable data forwarding in vehicular mobile cloud. Future Gener. Comput. Syst. 48(7), 60–72 (2015)CrossRefGoogle Scholar
  50. 50.
    Kumar, N., Tyagi, S., Deng, D.J.: LA-EEHSC: learning automata-based energy efficient heterogeneous selective clustering for wireless sensor networks. J. Netw Comput. Appl. 46(11), 264–279 (2014)CrossRefGoogle Scholar
  51. 51.
    Kumar, N., Misra, S., Rodrigues, J.J.P.C.: An intelligent approach for building a secure decentralized public key infrastructure in VANET. J. Comput. Syst. Sci. 81(6), 1042–1058 (2015)CrossRefGoogle Scholar
  52. 52.
    Kumar, N., Misra, S., Rodrigues, J.J.P.C., Obaidat, M.S.: Coalition games for spatio-temporal big data in internet of vehicles environment: a comparative analysis. IEEE Internet Things J. doi: 10.1109/JIOT.2015.2388588
  53. 53.
    Kumar, N., Rodrigues, J.J.P.C., Chilamkurti, N.: Bayesian coalition game as-a-service for content distribution in internet of vehicles. IEEE Internet Things J. 1(6), 544–555 (2014)CrossRefGoogle Scholar
  54. 54.
    Bali, R., Kumar, N., Rodrigues, J.J.P.C.: Clustering in vehicular ad hoc networks: taxonomy, challenges and solutions. Veh. Commun. 1(3), 134–152 (2014)CrossRefGoogle Scholar
  55. 55.
    Dua, A., Kumar, N., Bawa, S.: QoS-aware data dissemination for dense urban regions in vehicular ad hoc networks. Mobile Netw. Appl. doi: 10.1007/s11036-014-0553-4
  56. 56.
    Kumar, N., Kim, J.: Probabilistic trust aware data replica placement strategy for online video streaming applications in vehicular delay tolerant networks. Math. Comput. Model. 58(1/2), 3–14 (2013)CrossRefGoogle Scholar
  57. 57.
    Dua, A., Kumar, N., Bawa, S., Rodrigues, J.J.P.C.: An intelligent context-aware congestion resolution protocol for data dissemination in vehicular ad hoc networks. Mobile Netw. Appl. 20(2), 181–200 (2015)CrossRefGoogle Scholar
  58. 58.
    Kumar, N., Rodrigues, J.J.P.C., Lloret, J., Dua, A.: Replication-aware data dissemination for vehicular ad hoc networks using location determination. Mobile Netw. Appl. 20(2), 251–267 (2015)CrossRefGoogle Scholar
  59. 59.
    Kumar, N., Kaur, K., Misra, S.C., Iqbal, R.: An intelligent RFID-enabled authentication scheme for healthcare applications in vehicular mobile cloud. Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-015-0332-4
  60. 60.
    Kumar, N., Misra, S., Chilamkurti, N., Lee, J., Rodrigues, J.J.P.C.: Bayesian coalition negotiation game as a utility for secure energy management in a vehicles-to-grid environment. IEEE Trans. Depend. Secure Comput. doi: 10.1109/TDSC.2015.2415489
  61. 61.
    Kumar, N., Zeadally, S., Rodrigues, J.J.P.C.: QoS-aware hierarchical web caching scheme for online video streaming applications in internet-based vehicular ad hoc networks. IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2425364
  62. 62.
    Raya, M., Papadimitratos, P., Aad, I., Jungels, D., Hubaux, J.P.: Eviction of misbehaving and faulty nodes in vehicular networks. IEEE J. Sel. Areas Commun. 25(8), 1557–1568 (2008)CrossRefGoogle Scholar
  63. 63.
    Mafra, P.M., Fraga, J.S., Santin, A.O.: A distributed IDS for ad hoc networks. In: Proceedings of 26th IEEE International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 478–483 (2012)Google Scholar
  64. 64.
    European Commission Information Society. Internet of Things in 2020: a Roadmap for the Future.
  65. 65.
    Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO-simulation of urban mobility. Int. J. Adv. Syst. Meas. 5(3/4), 128–138 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Neeraj Kumar
    • 1
  • Jaskaran Preet Singh
    • 2
  • Rasmeet S. Bali
    • 2
  • Sudip Misra
    • 3
  • Sana Ullah
    • 4
  1. 1.Department of Computer Science and EngineeringThapar UniversityPatialaIndia
  2. 2.Department of Computer Science and EngineeringChandigarh UniversityChandigarhIndia
  3. 3.School of Information TechnologyIIT KharagpurKharagpurIndia
  4. 4.Polytechnic Institute of PortoPortoPortugal

Personalised recommendations