Cluster Computing

, Volume 17, Issue 3, pp 1069–1080 | Cite as

Development of Korean spine database and ontology for realizing e-Spine

  • Dongmin Seo
  • Hanmin Jung
  • Won-Kyung Sung
  • Sukil Kim
  • Sangho Lee


By 2026, Korea is expected to surpass the UNs definition of an aged society and reach the level of a super-aged society. As a result, degenerative spinal disease and the related surgical procedures will increase exponentially. To prevent unnecessary spinal surgery and support scientific diagnosis of spinal disease and systematic prediction of treatment effects, we have been developing e-Spine which is a computerized simulation model of human spines. In this paper, we present the Korean spine database and ontology that are used as a background data for realizing e-Spine. Generally, Korean physical function is different from foreign physical function. For example, ossification of posterior longitudinal ligament is only occurred in Asians. However, developed countries are currently constructing digital human data to improve the medical and biomedical researches, while the digital human data for Korean are inadequate. Therefore, we constructed Korean spine database on Korean with normal spine or degenerative spinal diseases. To date, we have collected spine data from 72 cadavers and 298 patients. The spine data consists of 2D images such as CT, MRI, or X-ray, 3D shapes, geometry data and property data. The volume and quality of Korean spine database are now the worlds highest. Also, we constructed spinal ontology to provide a wealth of information related to spine. The spinal ontology contains anatomy of spine, method of treatment, cause, classification information related to spine. Finally, we implemented a management service for efficiently searching and managing the data. As a result, our database and ontology will offer great value and utility in the diagnosis, treatment, and rehabilitation of patients suffering from spinal diseases.


e-Spine Human spine Korean spine  Spine database Spinal ontology 



This work was supported by 2014 National Agenda Project (NAP) funded by Korea Research Council of Fundamental Science & Technology (NAP-09-2).


  1. 1.
    Korean Health Insurance Review and Assessment Service: Analysis and research on spinal surgery. Press Release 10(27), 1–23 (2007)Google Scholar
  2. 2.
    National Health Insurance: 2009 Major surgery statistics. Press Release 12(1), 1–15 (2010)Google Scholar
  3. 3.
    e-Spine Project.
  4. 4.
    Seo, D., Lee, S., Lee, S., Lee, S., Jung, H., Sung, W.-K.: Implementation of spine database system on Korean patient with degenerative spinal diseases. In: Proceedings of International Smart Media Application, pp. 1–3, 2012Google Scholar
  5. 5.
    Nam, D., Cho, K.: Development of e-Spine simulation environment based on supercomputers. In: Proceedings of Korea Contents Association 9(1), 271–272 (2011)Google Scholar
  6. 6.
    Visible Human Project (VHP).
  7. 7.
    Banvard, R.A.: The visible human project image data set from inception to completion and beyond. In: Proceedings of CODATA: Frontiers of Scientific and Technical Data, 2002Google Scholar
  8. 8.
    Visible Korean Human (VKH) Project.
  9. 9.
    Digital Korean (DK) Project.
  10. 10.
    Chinese Visible Human (CVH) Project.
  11. 11.
    Zhang, S.-X., Heng, P.-A., Liu, Z.J., et al.: The Chinese visible human (CVH) datasets incorporate technical and imaging advances on earlier digital humans. J. Anat. 204(3), 165–174 (2004)CrossRefGoogle Scholar
  12. 12.
    Physiome Project.
  13. 13.
    Living Human Digital Library (LHDL) Project.
  14. 14.
    Panjabi, M.M., Duranceau, J., Goel, V., Oxland, T., Takata, K.: Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions. J. Spine 16(8), 861–869 (1991)CrossRefGoogle Scholar
  15. 15.
    Panjabi, M.M., Takata, K., Goel, V., Federico, D., Oxland, T., Duranceau, J., Krag, M.: Thoracic human vertebrae. Quantitative three dimensional anatomy. J. Spine 16(8), 888–901 (1991)CrossRefGoogle Scholar
  16. 16.
    Panjabi, M.M., Goel, V., Oxland, T., Takata, K., Duranceau, J., Krag, M., Price, M.: Human lumbar vertebrae. Quantitative three-dimensional anatomy. J. Spine 17(3), 299–306 (1992)CrossRefGoogle Scholar
  17. 17.
    Allemang, D., Hendler, J.A.: Semantic Web for the Working Ontology. Morgan Kaufmann, Waltham (2008)Google Scholar
  18. 18.
    Yu, L.: Introduction to the Semantic Web and Semantic Web Services. Chapman & Hall/CRC, New York . (2010)
  19. 19.
    Flahive, A., Taniar, D., Rahayu, W.: Ontology as a Service (OaaS): extracting and replacing sub-ontologies on the cloud. Clust. Comput. J. 16(4), 947–960 (2013)CrossRefGoogle Scholar
  20. 20.
    Han, J.-S., Kim, G.-J.: A method of intelligent recommendation using task ontology. Clust. Comput. (2013). doi: 10.1007/s10586-013-0288-1
  21. 21.
    Kwon, L.N., Choi, K.S., Kim, J.S., Jhun, S.J., Kim, Y.-K.: A study on semantic web design for global national R&D status analysis. Clust. Comput. (2013). doi: 10.1007/s10586-013-0299-y
  22. 22.
    Gorrepati, R.R., Ali, S., Kim, D.-H.: Hierarchical semantic information modeling and ontology for bird ecology. Clust. Comput. 16(4), 779–786 (2013)Google Scholar
  23. 23.
    Stedman.: Stedman’s Medical Dictionary, 28th edn. Lippincott Williams & Wilkins, New York. (2005)
  24. 24.
    Bridwell, K.H., DeWald, R.L.: The Textbook of Spine Surgery, 3rd edn. Lippincott Williams & Wilkins, New York. (2011)
  25. 25.
    The Catholic University of Korea Seoul St. Mary’s Hospital.
  26. 26.
    Pfirrmann, C.W., Metzdorf, A., Zanetti, M., Hodler, J., Boos, N.: Magnetic resonance classification of lumbar intervertebral disc degeneration. J. Spine 26(17), 1873–1878 (2001)CrossRefGoogle Scholar
  27. 27.
    Modic, M.T., Ross, J.S.: Lumbar degenerative disc disease. Radiology 245(1), 43–61 (2007)CrossRefGoogle Scholar
  28. 28.
    Ross, J.S., Moore, K.R., Borg, B., Crim, J., Shah, L.M.: Diagnostic Imaging: Spine, 2nd edn. Lippincott Williams & Wilkins, New York. (2010)
  29. 29.
    Pathria, M., Sartoris, D.J., Resnick, D.: Osteoarthritis of the facet joints: accuracy of oblique radiographic assessment. Radiology 164(1), 227–230 (1987)CrossRefGoogle Scholar
  30. 30.
    Weishaupt, D., Zanetti, M., Boos, N., Hodler, J.: MR imaging and CT in osteoarthritis of the lumbar facet joints. Skelet. Radiol. 28(4), 215–219 (1999)CrossRefGoogle Scholar
  31. 31.
    Van Goethem, J.W.M., van den Hauwe, L., Parizel, P.M., Baert, A.L.: Spinal Imaging: Diagnostic Imaging of the Spine and Spinal cord. Springer, New York. (2007)
  32. 32.
    Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41, 706–716 (2008)CrossRefGoogle Scholar
  33. 33.
    Panjabi, M.M., Oxland, T.R., Yamamoto, I., Crisco, J.J.: Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Jt. Surg. Am. 76(3), 413–424 (1994)Google Scholar
  34. 34.
    Moramarco, V., Perez del Palomar, A., Pappalettere, C., Doblare, M.: An accurate validation of a computational model of a human lumbosacral segment. J. Biomech. 43(2), 334–342 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dongmin Seo
    • 1
  • Hanmin Jung
    • 1
  • Won-Kyung Sung
    • 1
  • Sukil Kim
    • 2
  • Sangho Lee
    • 1
  1. 1.Software Research CenterKorea Institute of Science and Technology InformationDaejeonSouth Korea
  2. 2.College of MedicineThe Catholic UniversitySeoulSouth Korea

Personalised recommendations