Cluster Computing

, Volume 17, Issue 2, pp 551–568 | Cite as

HybridFlood: minimizing the effects of redundant messages and maximizing search efficiency of unstructured peer-to-peer networks

  • Hassan Barjini
  • Mohamed Othman
  • Hamidah Ibrahim
  • Nur Izura Udzir


Peer-to-peer systems are important Internet applications. A major portion of Internet traffic belongs to such applications. Flooding search is a basic search scheme for unstructured peer-to-peer networks, where a node must send a query message to all its neighbors when seeking a file (in a file sharing situation). Flooding has no knowledge about network topology and files distribution, thus it offers an attractive method for file discovery in dynamic and evolving networks. Although pure flooding can achieve high coverage but it produces exponentially redundant messages in each hop. Consequently, the growth of redundant messages limits system scalability and causes unnecessary traffic in networks. Besides, flooding has no opportunity to get an advantage of node diversity of participating in unstructured P2P networks.

To improve this searching scheme and reduce redundant messages, this paper proposes a novel algorithm named HybridFlood. This algorithm is divided into two steps. The first step follows the flooding with a limited number of hops. In the second step, nosey nodes are selected in each searching horizon. The nosey nodes are nodes which have the most links to other nodes. These nodes maintain the data index of all client nodes. We provided analytical studies for flooding and HybridFlood. The analytical results provided the best threshold point of hop for optimum coverage growth rate and redundant messages in flooding. It also proved in HybridFlood broadcasting messages are cut down at least an order of magnitude. Thus, the proposed algorithm extends the search efficiency by reducing redundant messages in each hop. The simulation experiments validated analytical results.


Peer-to-peer Searching Redundant messages 



The authors would like to thank the Ministry of Higher Education of Malaysia under the Fundamental Research Grant Scheme (FRGS) 01-11-SG-UPM-01-1 for their financial support.


  1. 1.
    Jiang, S., Guo, L., Zhang, X., Wang, H.: Lightflood: minimizing redundant messages and maximizing scope of peer-to-peer search. IEEE Trans. Parallel Distrib. Syst. 19(5), 601–614 (2008) CrossRefGoogle Scholar
  2. 2.
    Jiang, S., Zhang, X.: Floodtrail: an efficient file search technique in unstructured peer-to-peer systems. In: Global Telecommunications Conference. Globecom., vol. 5, pp. 2891–2895 (2003) CrossRefGoogle Scholar
  3. 3.
    Watanabe, K., Enokido, T., Takizawa, M., Kim, K.: Charge-based flooding algorithm for looking up multimedia objects in peer-to-peer overlay networks. In: Proceedings of the 11th International Conference on Parallel and Distributed Systems, ICPADS, July 2005, vol. 1, pp. 481–487 (2005) Google Scholar
  4. 4.
    Wu, A., Liu, X.L.K.: Efficient flooding in peer-to-peer networks. In: 7th International Conference on Computer-Aided Industrial Design and Conceptual Design. CAIDCD ’06, pp. 1–6. IEEE Press, New York (2006) Google Scholar
  5. 5.
    Abdullah, M., Othman, M., Ibrahim, H., Subramaniam, S.: Load allocation model for scheduling divisible data grid applications. J. Comput. Sci. 5(10), 760–763 (2009) CrossRefGoogle Scholar
  6. 6.
    Elena, M., Janne, R., Marina, P., Petri, M.: A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks. Comput. Netw. 52, 2097–2128 (2008) CrossRefGoogle Scholar
  7. 7.
    Napster: [last visited 18.01.2011]
  8. 8.
    Veizades, E.G.C.P.J.: Service location protocol, version 2. Technical report, Sun Microsystems (1999) Google Scholar
  9. 9.
    Klingberg, R.M.T.: The Gnutella protocol specification v 0.6. Technical report (2002) Google Scholar
  10. 10.
    Kazaa: [Last visited on 18.01.2011 ]
  11. 11.
    Cohen, B.: Incentives build robustness in bittorrent. In: 1st Workshop on Economics of Peer-to-Peer Systems, pp. 251–260 (2003) Google Scholar
  12. 12.
    Barjini, H., Othman, M., Ibrahim, H., Udzir, N.: Shortcoming, problems and analytical comparison for flooding-based search techniques in unstructured peer-to-peer networks. In: Peer-to-Peer Networking and Applications, pp. 1–13 (2011) Google Scholar
  13. 13.
    Zhu, Y.: Enhancing search performance in peer-to-peer networks. Electronic & Computer Engineering and Computer Science (2005). Ph.D. Dissertation Google Scholar
  14. 14.
    Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: International Conference on Distributed Computing Systems, vol. 22, pp. 5–14. IEEE Computer Society, Los Alamitos (2002) Google Scholar
  15. 15.
    Tseng, Y.-C., Ni, S., Chen, Y.C., Sheu, J.P: The broadcast storm problem in a mobile ad hoc network. In: Wireless Networks, vol. 8 pp. 153–168. ACM, New York (2002) Google Scholar
  16. 16.
    Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and replication in unstructured peer-to-peer networks In: Proceedings of the 16th International Conference on Supercomputing, vol. 30, pp. 84–95 (2002) CrossRefGoogle Scholar
  17. 17.
    Zeinalipour-Yazti, D., Kalogeraki, V.G.D.: Pfusion: a p2p architecture for Internet-scale content-based search and retrieval. IEEE Trans. Parallel Distrib. Syst. 18, 804–817 (2007) CrossRefGoogle Scholar
  18. 18.
    Kalogeraki, V., Zeinalipour-Yazti, D.G.D.: A local search mechanism for peer-to-peer networks. In: CIKM 2002, pp. 300–307. ACM, New York (2002) Google Scholar
  19. 19.
    Vassilios, V., Dimakopoulos, E.P.: On the performance of flooding-based resource discovery. IEEE Trans. Parallel Distrib. Syst. 17(11), 1242–1252 (2006) CrossRefGoogle Scholar
  20. 20.
    Zeinalipour-Yazti, D., Kalogeraki, V.G.D.: Information retrieval techniques for peer-to-peer networks. In: Computing in Science and Engineering. CS Digital Library, vol. 6, pp. 20–26 (2004) Google Scholar
  21. 21.
    Yang, B., Garcia-Molina, H.: Designing a super-peer networks. In: Proceedings of the International Conference on Data Engineering, pp. 49–62. IEEE Computer Society Press, Los Alamitos (2003 Google Scholar
  22. 22.
    Gaeta, R., Balbo, G., Bruell, S., Gribaudo, M., Sereno, M.: A simple analytical framework to analyze search strategies in large-scale peer-to-peer networks. Perform. Eval. 62, 1–16 (2005) CrossRefGoogle Scholar
  23. 23.
    Gaeta, R., Sereno, M.: Generalized probabilistic flooding in unstructured peer-to-peer networks. IEEE Trans. Parallel Distrib. Syst. 22(12), 2055–2062 (2011) CrossRefGoogle Scholar
  24. 24.
    Gaeta, R., Sereno, M.: Model-based evaluation of search strategies in peer-to-peer networks. In: IPDPS 2006. 20th International of Parallel and Distributed Processing Symposium, p. 8. IEEE Press, New York (2006) Google Scholar
  25. 25.
    Gaeta, R., Sereno, M.: Random graphs as models of hierarchical peer-to-peer networks. Perform. Eval. 64(9), 838–855 (2007) CrossRefGoogle Scholar
  26. 26.
    Gaeta, R., Sereno, M.: On the evaluation of flooding-based search strategies in peer-to-peer networks. Concurr. Comput. 20(6), 713–734 (2008) CrossRefGoogle Scholar
  27. 27.
    Rodero-Merino, L., Anta, A.F., López, L., Cholvi, V.: Performance of random walks in one-hop replication networks. Comput. Netw. 54(5), 781–796 (2010) CrossRefMATHGoogle Scholar
  28. 28.
    Zhang, R., Hu, Y.C.: Assisted peer-to-peer search with partial indexing. IEEE Trans. Parallel Distrib. Syst. 18(8), 1146–1158 (2007) CrossRefGoogle Scholar
  29. 29.
    Gkantsidis, C., Mihail, M., Saberi, A.: Hybrid search schemes for unstructured peer-to-peer networks. In: INFOCOM 2005. Proceedings IEEE of 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1526–1537. IEEE Press, New York (2005) Google Scholar
  30. 30.
    Karl Aberer, M.H.: An overview on peer-to-peer information systems. In: WDAS, pp. 171–188 (2002) Google Scholar
  31. 31.
    Zhenzhou, K., Kalnis, P., Bakiras, S.: Dcmp: a distributed cycle minimization protocol for peer-to-peer networks. IEEE Trans. Parallel Distrib. Syst. 19, 363–377 (2008) CrossRefGoogle Scholar
  32. 32.
    Medina, A., Ibrahim Matta, J.B.: Brite: a flexible generator of internet topologies. Technical report, Boston, MA, USA (2000-005) Google Scholar
  33. 33.
    Lin, T., Pochiang Lin, H.W.C.C.: Dynamic search algorithm in unstructured peer-to-peer networks. IEEE Trans. Parallel Distrib. Syst. 20, 654–666 (2009) CrossRefGoogle Scholar
  34. 34.
    Jin, S., Jiang, H.: Novel approaches to efficient flooding search in peer-to-peer networks. Comput. Netw. 51(10), 2818–2832 (2007). Compilation and indexing terms, Copyright 2008 Elsevier Inc. 20071910588737 Controlled flooding peer-to-peer networks random graphs spiral pattern CrossRefMATHGoogle Scholar
  35. 35.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hassan Barjini
    • 1
  • Mohamed Othman
    • 1
  • Hamidah Ibrahim
    • 1
  • Nur Izura Udzir
    • 1
  1. 1.Department of Computer EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations