Advertisement

Cluster Computing

, Volume 16, Issue 3, pp 389–406 | Cite as

Extended fuzzy c-means: an analyzing data clustering problems

  • S. Ramathilagam
  • R. Devi
  • S. R. Kannan
Article

Abstract

In recent years the use of fuzzy clustering techniques in medical diagnosis is increasing steadily, because of the effectiveness of fuzzy clustering techniques in recognizing the systems in the medical database to help medical experts in diagnosing diseases. This study focuses on clustering lung cancer dataset into three types of cancers which are leading cause of cancer death in the world. This paper invents effective fuzzy clustering techniques by incorporating hyper tangent kernel function, and entropy methods for analyzing the Lung Cancer database to assist physician in diagnosing lung cancer. Further this paper proposes an algorithm to initialize the cluster centers to speed up the process of the algorithms. The effectiveness of the proposed methods has been proved through the experimental works on synthetic dataset, Wine dataset and IRIS dataset in terms of running time, number of iterations, visual segmentation effects and clustering accuracy. And then this paper proposes the proposed method on Lung cancer database to divide it into three types of lung cancers. In addition this paper proves the superiority of the proposed methods by comparing the obtained classes with reference classes through Error Matrix.

Keywords

Clustering Fuzzy c-means Kernel distances Medical database Lung cancer 

Notes

Acknowledgements

This work was financially support by UGC MRP, India (Ref. No. 39-35/2010(SR)).

References

  1. 1.
    Abonyi, J., Szeifert, F.: Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit. Lett. 24(14), 2195–2207 (2003) MATHCrossRefGoogle Scholar
  2. 2.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981) MATHCrossRefGoogle Scholar
  3. 3.
    Hassanien, A.E.: Rough set approach for attribute reduction and rule generation: a case of patients with suspected breast cancer. J. Am. Soc. Inf. Sci. Technol. 55(11), 954–962 (2004) CrossRefGoogle Scholar
  4. 4.
    Chen, H.-L., Yang, B., Liu, J., Liu, D.-Y.: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst. Appl. 38, 9014–9022 (2011) CrossRefGoogle Scholar
  5. 5.
    Kannan, S.R., Ramathilagam, S.: Fuzzy error matrix in classification techniques. Int. J. Appl. Math. Inform. 26(1–5), 861–876 (2008). ISSN: 1598-5857 Google Scholar
  6. 6.
    Kanzawa, Y., Endo, Y., Miyamoto, S.: Fuzzy classification function of entropy regularized fuzzy c-means algorithm for data with tolerance using kernel function. In: Granular Computing (GrC 2008), pp. 350–355 (2008) IEEE Xplore CrossRefGoogle Scholar
  7. 7.
    Maglogiannis, I., Zafiropoulos, E., et al.: An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers. Appl. Intell. 30(1), 24–36 (2009) CrossRefGoogle Scholar
  8. 8.
    Parkin, D.M., Bray, F., Ferlay, J., Pisani, P.: Global cancer statistics. CA Cancer J Clin 55(2), 74–108 (2002) CrossRefGoogle Scholar
  9. 9.
    Pena-Reyes, C.A., Sipper, M.: A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17(2), 131–155 (1999) CrossRefGoogle Scholar
  10. 10.
    Polat, K., Gunes, S.: Breast cancer diagnosis using least square support vector machine. Digit. Signal Process. 17(4), 694–701 (2007) CrossRefGoogle Scholar
  11. 11.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987) MATHCrossRefGoogle Scholar
  12. 12.
    Sahan, S., Polat, K., et al.: A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. Comput. Biol. Med. 37(3), 415–423 (2007) CrossRefGoogle Scholar
  13. 13.
    Setiono, R.: Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 18(3), 205–219 (2000) CrossRefGoogle Scholar
  14. 14.
    Hawes, S.E., Stern, J.E., Feng, Q., Wiens, L.W., Rasey, Janet S., Lu, H., Kiviat, N.B., Vesselle, H.: DNA hypermethylation of tumors from non-small cell lung cancer (NSCLC) patients is associated with gender and histologic type. Lung Cancer 69(2010), 172–179 (2010) CrossRefGoogle Scholar
  15. 15.
    Tamer, A.M., Karahan, H.X., Aral, M.M.: Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm. J. Hydrol. 343, 240–253 (2007) CrossRefGoogle Scholar
  16. 16.
    Ubeyli, E.D.: Implementing automated diagnostic systems for breast cancer detection. Expert Syst. Appl. 33(4), 1054–1062 (2007) CrossRefGoogle Scholar
  17. 17.
    UCI Benchmark repository: a huge collection of artificial and real world data sets, University of California Irvine. http://www.ics.uci.edu/~mlearn
  18. 18.
    Zhang, D.Q., Chen, S.C.: Clustering incomplete data using kernel-based fuzzy C-means algorithm. Neural Process. Lett. 18(3), 155–162 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsPeriyar Govt. CollegeCuddaloreIndia
  2. 2.Department of MathematicsPondicherry UniversityPondicherryIndia

Personalised recommendations