Advertisement

Clinical & Experimental Metastasis

, Volume 34, Issue 1, pp 1–10 | Cite as

Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons

  • Tapas Das
  • Sharmila Banerjee
Review

Abstract

Bone pain arising due to skeletal metastases is one of the common complications experienced by the majority of patients suffering from prostate, breast and lung cancer at the advanced stage of the disease. These patients are subjected to palliative care in order to improve the quality of their remaining life. With the gradually increasing number of cancer cases, palliation of metastatic bone pain is gaining importance. Bone-seeking radiopharmaceuticals play a pivotal role in the management of cancer pain, particularly in patients with multiple metastases, as these agents are proven to be effective in controlling the bone pain with minimum side effects. Although a plethora of such radiopharmaceuticals have been developed and evaluated in animal models, only a few are regularly used in clinics while some of these agents are at different stages of clinical evaluations. The present article describes only those bone-seeking radiopharmaceuticals, which have been reported to be clinically administered till date, along with their relative merits and drawbacks.

Keywords

Bone pain palliation Bone-seeking radiopharmaceuticals Radiolabeled phosphonates Na332PO4 89SrCl2 117mSn-DTPA 223RaCl2 

Notes

Acknowledgement

The authors gratefully acknowledge Dr. Ajit Shinto, Head, Department of Nuclear Medicine & PET-CT, Kovai Medical Center and Hospital, Coimbatore, India for proving the patient images used in this article. Bhabha Atomic Research Centre is a constituent of Department of Atomic Energy, Government of India and all research activities of the institute is fully funded by the Government of India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Palma E, Correia JDG, Campello MPC, Santos I (2011) Bisphosphonates as radionuclide carriers for imaging or systemic therapy. Mol Biosyst 7:2950–2966CrossRefPubMedGoogle Scholar
  2. 2.
    Mertens WC, Filipczak LA, Ben-Josef E, Davis LP, Porter AT (1998) Systemic bone-seeking radionuclides for palliation of painful osseous metastases: current concepts. CA Cancer J Clin 48:361–374CrossRefPubMedGoogle Scholar
  3. 3.
    Garrett IR (1993) Bone destruction in cancer. Semin Oncol 20(Suppl 2):4–9PubMedGoogle Scholar
  4. 4.
    Costa L, Major PP (2009) Effect of bisphosphonates on pain and quality of life in patients with bone metastases. Nat Clin Pract Oncol 6:163–174CrossRefPubMedGoogle Scholar
  5. 5.
    Selvaggi G, Scagliotti GV (2005) Management of bone metastases in cancer: a review. Crit Rev Oncol Hematol 56:365–378CrossRefPubMedGoogle Scholar
  6. 6.
    Greco C, Forte L, Erba P, Mariani G (2011) Bone metastases, general and clinical issues. Quart J Nucl Med Mol Imaging 55:337–352Google Scholar
  7. 7.
    DeNardo GL (1998) Bone pain palliation. Cancer Biother Radiopharm 13:407–411CrossRefPubMedGoogle Scholar
  8. 8.
    Paes FM, Serafini AN (2010) Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med 40:89–104CrossRefPubMedGoogle Scholar
  9. 9.
    Bodei L, Lam M, Chiesa C, Flux G, Brans B, Chiti A, Giammarile F (2008) EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging 35:1934–1940CrossRefPubMedGoogle Scholar
  10. 10.
    Li BT, Wong WT, Pavlakis N (2014) Treatment and prevention of bone metastases from breast cancer: a comprehensive review of evidence for clinical practice. J Clin Med 3:1–24CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lewington VJ (2005) Bone-seeking radionuclides for therapy. J Nucl Med 46:38S–47SPubMedGoogle Scholar
  12. 12.
    Volkert WA, Hoffman TJ (1999) Therapeutic radiopharmaceuticals. Chem Rev 99:2269–2292CrossRefPubMedGoogle Scholar
  13. 13.
    Guerra Liberal FDC, Tavares AAS, Tavares JMRS (2014) Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods. Med Phys. doi: 10.1118/1.4897240 PubMedGoogle Scholar
  14. 14.
    Vats K, Das T, Sarma HD, Banerjee S, Pillai MRA (2013) Radiolabeling, stability studies and pharmacokinetic evaluation of Thulium-170-labeled acyclic and cyclic polyaminopolyphosphonic acids. Cancer Biother Radiopharm 28:737–745CrossRefPubMedGoogle Scholar
  15. 15.
    Giammarile F, Mognetti T, Resche I (2001) Bone pain palliation with strontium-89 in cancer patients with bone metastases. Quart J Nucl Med 45:78–83Google Scholar
  16. 16.
    Finlay IG, Mason MD, Shelley M (2005) Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol 6:392–400CrossRefPubMedGoogle Scholar
  17. 17.
    Goeckeler WF, Edwards B, Volkert WA, Holmes RA, Simon J, Winston D (1987) Skeletal localisation of samarium-153 chelates: potential therapeutic bone agents. J Nucl Med 28:495–504PubMedGoogle Scholar
  18. 18.
    Jurisson S, Berning D, Jia W, Ma D (1993) Coordination compounds in nuclear medicine. Chem Rev 93:1137–1156CrossRefGoogle Scholar
  19. 19.
    Das T, Chakraborty S, Unni PR, Banerjee S, Samuel G, Sarma HD, Venkatesh M, Pillai MRA (2002) 177Lu-labeled cyclic polyaminophosphonates as potential agents for bone pain palliation. Appl Radiat Isot 57:177–184CrossRefPubMedGoogle Scholar
  20. 20.
    Harrison MR, Wong TZ, Armstrong AJ, George DJ (2013) Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Manag Res 5:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Abi-Ghanem AS, McGrath MA, Jacene HA (2015) Radionuclide therapy for osseous metastases in prostate cancer. Semin Nucl Med 45:66–80CrossRefPubMedGoogle Scholar
  22. 22.
    Shirley M, McCormack PL (2014) Radium-223 dichloride: a review of its use in patients with castration-resistant prostate cancer with symptomatic bone metastases. Drugs 74:579–586CrossRefPubMedGoogle Scholar
  23. 23.
    Vengalil S, O’Sullivan JM, Parker CC (2012) Use of radionuclides in metastatic prostate cancer: pain relief and beyond. Curr Opin Support Palliat Care 6:310–315CrossRefPubMedGoogle Scholar
  24. 24.
    Parker C, Heinrich D, O’Sullivan JM, Fossa S, Chodacki A, Demkow T, Cross A, Bolstad B, Garcia-Vargas J, Sartor O (2011) Overall survival benefit of radium-223 chloride (alpharadin™) in the treatment of patients with symptomatic bone metastases in castration-resistant prostate cancer (CRPC): a phase III randomized trial (ALSYMPCA). Eur J Cancer 47(Suppl 2):3CrossRefGoogle Scholar
  25. 25.
    Maini CL, Sciuto R, Romano L, Bergomi S (2003) Radionuclide therapy with bone seeking radionuclides in palliation of painful bone metastases. J Exp Clin Cancer Res 22(4 Suppl):71–74PubMedGoogle Scholar
  26. 26.
    Lewington VJ (1993) Targeted radionuclide therapy for bone metastases. Eur J Nucl Med 20:66–74CrossRefPubMedGoogle Scholar
  27. 27.
    Bauman G, Charette M, Reid R, Sathya J (2005) Radiopharmaceuticals for the palliation of painful bone metastasis—a systemic review. Radiother Oncol 75:258–270CrossRefPubMedGoogle Scholar
  28. 28.
    Ogawa K, Washiyama K (2012) Bone target radiotracers for palliative therapy of bone metastases. Curr Med Chem 19:3290–3300CrossRefPubMedGoogle Scholar
  29. 29.
    Guerra Liberal FDC, Tavares AAS, Tavares JMRS (2016) Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot 110:87–99CrossRefPubMedGoogle Scholar
  30. 30.
    Friedell HL, Storaasli JP (1950) The use of radioactive phosphorus in the treatment of carcinoma of the breast with widespread metastases to bone. AJR Am J Roentgenol 64:559–575Google Scholar
  31. 31.
    Silberstein EB (1993) The treatment of painful osseous metastases with phosphorus-32-labeled phosphates. Semin Oncol 20(suppl 2):10–21PubMedGoogle Scholar
  32. 32.
    Silberstein EB, Buscombe JR, Taylor AT Jr (2003) Society of nuclear medicine procedure guideline for palliative treatment of painful bone metastases. Soc Nucl Med Proced Guidel Man 147–154Google Scholar
  33. 33.
    Pandit-Taskar N, Batraki M, Divgi CR (2004) Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med 45:1358–1365PubMedGoogle Scholar
  34. 34.
    Das T, Pillai MRA (2013) Options to meet the future global demand of radionuclides for radionuclide therapy. Nucl Med Biol 40:23–32CrossRefPubMedGoogle Scholar
  35. 35.
    Vimalnath KV, Shetty P, Chakraborty S, Das T, Chirayil V, Sarma HD, Jagadeesan KC, Joshi PV (2013) Practicality of production of 32P by direct neutron activation for its utilization in bone pain palliation as Na3[32P]PO4. Cancer Biother Radiopharm 28:423–428CrossRefPubMedGoogle Scholar
  36. 36.
    Atkins HL (1998) Overview of nuclides for bone pain palliation. Appl Radiat Isot 49:277–283CrossRefPubMedGoogle Scholar
  37. 37.
    Srivastava S, Dadachova E (2001) Recent advances in radionuclide therapy. Semin Nucl Med 31:330–341CrossRefPubMedGoogle Scholar
  38. 38.
    Blake GM, Zivanovic MA, McEwan AJ, Ackery DM (1986) Sr-89 therapy: strontium kinetics in disseminated carcinoma of the prostate. Eur J Nucl Med 12:447–454PubMedGoogle Scholar
  39. 39.
    Sciuto R, Festa A, Pasqualoni R, Semprebene A, Rea S, Bergomi S, Maini CL (2001) Metastatic bone pain palliation with 89Sr and 186Re-HEDP in breast cancer patients. Br Cancer Res Treat 66:101–109CrossRefGoogle Scholar
  40. 40.
    Bos SD (1994) An overview of current clinical experience with Strontium-89 (Metastron®). Prostate 25:23–26CrossRefGoogle Scholar
  41. 41.
    Das T, Chakraborty S, Sarma HD, Tandon P, Banerjee S, Venkatesh M, Pillai MRA (2009) 170Tm-EDTMP: a potential cost-effective alternative to 89SrCl2 for bone pain palliation. Nucl Med Biol 36:561–568CrossRefPubMedGoogle Scholar
  42. 42.
    Kostadinova I, Pavlova A, Chakarova A, Petkova E (2006) Which is better and more effective to use in patients with painful bone metastasis–89Sr or 32P. Rentgenol i Radiol 43:67–68Google Scholar
  43. 43.
    Resche I, Chatal JF, Pecking A, Ell PJ, Duchesne G, Rubens R, Fogelman I, Houston S, Fauser A, Fischer M, Wilkins D (1997) A dose-controlled study of 153Sm-ethylenediaminetetramethylenephosphonate (EDTMP) in the treatment of patients with painful bone metastases. Eur J Cancer 33:1583–1591CrossRefPubMedGoogle Scholar
  44. 44.
    Serafini AN, Houston SJ, Resche I, Quick DP, Grund FM, Ell PJ, Bertrand A, Ahmann FR, Orihuela E, Reid RH, Lerski RA, Collier BD, McKillop JH, Purnell GL, Pecking AP, Thomas FD, Harrison KA (1998) Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol 16:1574–1581PubMedGoogle Scholar
  45. 45.
    Sartor O, Reid RH, Hoskin PJ, Quick DP, Ell PJ, Coleman RE, Kotler JA, Freeman LM, Olivier P (2004) Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology 63:940–945CrossRefPubMedGoogle Scholar
  46. 46.
    Serafini AN (2000) Samarium Sm-153 lexidronam for the palliation of bone pain associated with metastases. Cancer 88:2934–2939CrossRefPubMedGoogle Scholar
  47. 47.
    Eary JF, Collins C, Stabin M, Vernon C, Petersdorf S, Baker M, Hartnett S, Ferency S, Addison SJ, Appelbaum F (1993) Samarium-153-EDTMP biodistribution and dosimetry estimation. J Nucl Med 34:1031–1036PubMedGoogle Scholar
  48. 48.
    Collins C, Eary JF, Donaldson G, Vernon C, Bush NE, Petersdorf S, Livingston RB, Gordon EE, Chapman CR, Appelbaum FR (1993) Samarium-153-EDTMP in bone metastases of hormone refractory prostate carcinoma: a phase I/II trial. J Nucl Med 34:1839–1844PubMedGoogle Scholar
  49. 49.
    Chakraborty S, Das T, Banerjee S, Chaudhari PR, Sarma HD, Venkatesh M, Pillai MRA (2004) Preparation and biological evaluation of 153Sm-DOTMP as a potential agent for bone pain palliation. Nucl Med Commun 25:1169–1176CrossRefPubMedGoogle Scholar
  50. 50.
    Ramamoorthy N, Saraswathy P, Das MK, Mehra KS, Ananthakrishnan M (2002) Production logistics and radionuclidic purity aspects of 153Sm for radionuclide therapy. Nucl Med Commun 23:83–89CrossRefPubMedGoogle Scholar
  51. 51.
    Palmedo H, Guhlke S, Bender H, Sartor J, Schoeneich G, Risse J, Grunwald F, Knapp FF Jr, Biersack HJ (2000) Dose escalation study with Rhenium-188 HEDP in prostate cancer patients with osseous metastases. Eur J Nucl Med 27:123–130CrossRefPubMedGoogle Scholar
  52. 52.
    Biersack HJ, Palmedo H, Andris A, Rogenhofer S, Knapp FF Jr, Guhlke S, Ezziddin S, Bucerius J, von Mallek D (2011) Palliation and survival after repeated 188Re-HEDP therapy of hormone-refractory bone metastases of prostate cancer: a retrospective analysis. J Nucl Med 52:1721–1726CrossRefPubMedGoogle Scholar
  53. 53.
    Palmedo H, Manka-Waluch A, Albers P, Schmidt-Wolf IGH, Reinhardt M, Ezziddin S, Joe A, Roedel R, Fimmers R, Knapp FF Jr, Guhlke S, Biersack HJ (2003) Repeated bone-targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high-energy radiopharmaceutical rhenium-188 hydroxyethylidenediphosphonate. J Clin Oncol 21:2869–2875CrossRefPubMedGoogle Scholar
  54. 54.
    Cheng A, Chen S, Zhang Y, Yin D, Dong M (2011) The tolerance and therapeutic efficacy of rhenium-188 hydroxyethylidene diphosphonate in advanced cancer patients with painful osseous metastases. Cancer Biother Radiopharm 26:237–244CrossRefPubMedGoogle Scholar
  55. 55.
    Jeong JM, Chung JK (2003) Therapy with 188Re-labeled radiopharmaceuticals: an overview of promising results from initial clinical trials. Cancer Biother Radiopharm 18:707–717CrossRefPubMedGoogle Scholar
  56. 56.
    Boschi A, Uccelli L, Pasquali M, Duatti A, Taibi A, Pupillo G, Esposito J (2014) 188W/188Re generator system and its therapeutic applications. J Chem (Article number 529406)Google Scholar
  57. 57.
    Pillai MRA, Dash A, Knapp FF Jr (2012) Rhenium-188: availability from the 188W/188Re generator and status of current applications. Curr Radiopharm 5:228–243CrossRefPubMedGoogle Scholar
  58. 58.
    Verdera ES, Gaudiano J, Leon A, Martinez G, Robles A, Savio E, Leon E, McPherson DW, Knapp FF Jr (1997) Rhenium-188-HEDP-kit formulation and quality control. Radiochim Acta 79:113–117CrossRefGoogle Scholar
  59. 59.
    Mallia MB, Shinto AS, Kameswaran M, Kamaleshwaran KK, Radhakrishnan K, Aswathy KK, Banerjee S (2016) A freeze-dried kit for the preparation of 188Re-HEDP for bone pain palliation: preparation and preliminary clinical evaluation. Cancer Biother Radiopharm 31:139–144CrossRefPubMedGoogle Scholar
  60. 60.
    Knapp FF Jr, Mirzadeh S, Garland M, Ponsard B, Kuznetzov R (2010) Reactor production and processing of 188W. Production of long-lived parent radionuclides for generators: 68Ge, 82Sr, 90Sr and 188W. IAEA:79–109, ISBN: 978-92-0-101110-7. http://www-pub.iaea.org/MTCD/publications/PubDetails.asp?pubId = 8268. Accessed 10 Dec 2016
  61. 61.
    Maxon HR III, Thomas SR, Hertzberg VS, Schroder LE, Englaro EE, Samaratunga R, Scher HI, Moulton JS, Deutsch EA, Deutsch KF, Schneider HJ, Williams CC (1992) Rhenium-186 hydroxyethylidene diphosphonate for the treatment of painful osseous metastases. Semin Nucl Med 2:33–40CrossRefGoogle Scholar
  62. 62.
    Zafeirakis A, Zissimopoulos A, Baziotis N, Limouris GS (2009) Management of metastatic bone pain with repeated doses of rhenium-186-HEDP in patients under therapy with zoledronic acid: a safe and additively effective practice. Cancer Biother Radiopharm 24:543–550CrossRefPubMedGoogle Scholar
  63. 63.
    Van Dodewaard-De Jong JM, de Klerk JMH, Bloemendal HJ, Van Bezooijen BPJ, de Haas MJ, Wilson RH, O’Sullivan JM (2011) A phase I study of combined docetaxel and repeated high activity 186Re-HEDP in castration-resistant prostate cancer (CRPC) metastatic to bone (the TAXIUM trial). Eur J Nucl Med Mol Imaging 38:1990–1998CrossRefPubMedGoogle Scholar
  64. 64.
    Pirayesh E, Amoui M, Mirzaee HR, Tabei F, Rakhsha A, Kalantari BA, Shafiei B, Assadi M, Asli IN (2013) Phase 2 study of a high dose of 186Re-HEDP for bone pain palliation in patients with widespread skeletal metastases. J Nucl Med Technol 41:192–196CrossRefPubMedGoogle Scholar
  65. 65.
    Srivastava SC, Meinken GE, Richards P, Som P, Oster ZH, Atkins HL, Brill A, Knapp FF Jr, Butler TA (1985) The development and in vivo behavior of tin-containing radiopharmaceuticals: I. Chemistry, preparation and distribution in small animals. Int J Nucl Med Biol 12:l67–174CrossRefGoogle Scholar
  66. 66.
    Oster ZH, Som P, Srivastava SC, Fairchild RG, Meinken GE, Tillman DY, Sacker DF, Richards P, Atkins HL, Brill AB (1985) The development and in vivo behavior of tin-containing radiopharmaceuticals: II. Autoradiographic and scintigraphic studies in normal animals and animal model of bone disease. Int J Nucl Med Biol 12:175–184CrossRefPubMedGoogle Scholar
  67. 67.
    Atkins HL, Mausner LF, Srivastava SC, Meinken GE, Straub RF, Cabahug CJ, Weber DA, Wong CT, Sacker DF, Madajewicz S (1993) Biodistribution of Sn-l17m(4+)DTPA for palliation therapy of painful osseous metastases. Radiology 186:279–283CrossRefPubMedGoogle Scholar
  68. 68.
    Atkins HL, Mausner LF, Srivastava SC, Meinken GE, Cabahug CJ, D’Alessandro T (1995) Sn-117m(4+)DTPA for palliation of painful osseous metastases: a pilot study. J Nucl Med 36:725–729PubMedGoogle Scholar
  69. 69.
    Krishnamurthy GT, Swailem FM, Srivastava SC, Atkins HL, Simpson LJ, Walsh KT, Ahmann FR, Meinken GE, Shah JH (1997) Tin-117m(4+)DTPA: pharmacokinetics and imaging characteristics in patients with metastatic bone pain. J Nucl Med 38:230–237PubMedGoogle Scholar
  70. 70.
    Srivastava SC, Atkins HL, Krishnamurthy GT, Zanzi I, Silberstein EB, Meinken G, Mausner LF, Swailem F, D’Alessandro T, Cabahug CJ, Lau Y, Park T, Madajewicz S (1998) Treatment of metastatic bone pain with tin-117m stannic diethylenetriaminepentaacetic acid: a phase I/II clinical study. Clin Cancer Res 4:61–68PubMedGoogle Scholar
  71. 71.
    Bishayee A, Rao DV, Srivastava SC, Bouchet LG, Bloch WE, Howel RW (2000) Marrow sparing effects of 117mSn(4+) diethylenetriaminepentaacetic acid for radionuclidic therapy of bone cancer. J Nucl Med 41:2043–2050PubMedGoogle Scholar
  72. 72.
    Manuel for reactor produced isotopes. IAEA (2003) Vienna, Austria. http://www.isotopes.gov/outreach/reports/Reactor_Isotopes.pdf. Accessed 10 Dec 2016
  73. 73.
    Srivastava SC (2013) A bridge not too far: personalized medicine with the use of Theragnostic Radiopharmaceuticals. J Postgrad Med Educ Res 47:31–46CrossRefGoogle Scholar
  74. 74.
    Maslov OD, Starodub GY, Vostokin GK, Gustova MV, Dmitriev SN, Shvetsov VN, Szucs Z, Jansen D, Zeevaart JR (2011) Production of Sn-117m with high specific activity by cyclotron. Appl Radiat Isot 69:965–968CrossRefPubMedGoogle Scholar
  75. 75.
    Yuan J, Liu C, Liu X, Wang Y, Kuai D, Zhang G, Zaknun JJ (2013) Efficacy and safety of 177Lu-EDTMP in bone metastatic pain palliation in breast cancer and hormone refractory prostate cancer: a phase II study. Clin Nucl Med 38:88–92CrossRefPubMedGoogle Scholar
  76. 76.
    Agarwal KK, Singla S, Arora G, Bal CS (2015) 177Lu-EDTMP for palliation of pain from bone metastases in patients with prostate and breast cancer: a phase II study. Eur J Nucl Med Mol Imaging 42:79–88CrossRefPubMedGoogle Scholar
  77. 77.
    Shinto AS, Shibu D, Kamaleshwaran KK, Das T, Chakraborty S, Banerjee S, Thirumalaisamy P, Das P, Veersekar G (2014) 177Lu-EDTMP for treatment of bone pain in patients with disseminated skeletal metastases. J Nucl Med Technol 42:55–61CrossRefPubMedGoogle Scholar
  78. 78.
    Thapa P, Nikam D, Das T, Sonawane G, Agarwal JP, Basu S (2015) Clinical efficacy and safety comparison of 177Lu-EDTMP with 153Sm-EDTMP on an equidose basis in patients with painful skeletal metastases. J Nucl Med 56:1513–1519CrossRefPubMedGoogle Scholar
  79. 79.
    Pillai MRA, Chakraborty S, Das T, Venkatesh M, Ramamoorthy N (2003) Production logistics of 177Lu for radionuclide therapy. Appl Radiat Isot 59:109–118CrossRefPubMedGoogle Scholar
  80. 80.
    Banerjee S, Das T, Chakraborty S, Venkatesh M (2012) Emergence and present status of Lu-177 in targeted radiotherapy: the Indian scenario. Radiochim Acta 100:115–126CrossRefGoogle Scholar
  81. 81.
    Chakraborty S, Das T, Banerjee S, Balogh L, Chaudhari PR, Sarma HD, Polyák A, Máthé D, Venkatesh M, Janoki G, Pillai MRA (2008) 177Lu-EDTMP: a viable bone pain palliative in skeletal metastasis. Cancer Biother Radiopharm 23:202–213CrossRefPubMedGoogle Scholar
  82. 82.
    Das T, Sarma HD, Shinto A, Kamaleshwaran KK, Banerjee S (2014) Formulation, pre-clinical evaluation and preliminary clinical investigation of an in-house freeze-dried EDTMP kit suitable for the preparation of 177Lu-EDTMP. Cancer Biother Radiopharm 29:412–421CrossRefPubMedGoogle Scholar
  83. 83.
    Garnuszek P, Pawlak D, Licińska I, Kamińska A (2003) Evaluation of a freeze-dried kit for EDTMP-based bone-seeking radiopharmaceuticals. Appl Radiat Isot 58:481–488CrossRefPubMedGoogle Scholar
  84. 84.
    Bruland ØS, Nilsson S, Fisher DR, Larsen RH (2006) High-linear energy transfer irradiation targeted to skeletal metastases by the α-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res 12:6250s–6257sCrossRefPubMedGoogle Scholar
  85. 85.
    Ritter MA, Cleaver JE, Tobias CA (1977) High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature 266:653–655CrossRefPubMedGoogle Scholar
  86. 86.
    Bruland ØS, Jonasdottir TJ, Fisher DR, Larsen RH (2008) Radium-223: from radiochemical development to clinical applications in targeted cancer therapy. Curr Radiopharm 1:203–208CrossRefGoogle Scholar
  87. 87.
    Henriksen G, Breistol K, Bruland ØS, Fodstad O, Larsen RH (2002) Significant antitumor effect from bone-seeking, alpha-particle-emitting (223)Ra demonstrated in an experimental skeletal metastases model. Cancer Res 62:3120–3125PubMedGoogle Scholar
  88. 88.
    van Leeuwen FW, Verboom W, Reinhoudt DN (2005) Selective extraction of naturally occurring radioactive Ra2+. Chem Soc Rev 34:753–761CrossRefPubMedGoogle Scholar
  89. 89.
    Nilsson S, Larsen RH, Fossa SD, Balteskard L, Borch KW, Westlin JE, Salberg G, Bruland ØS (2005) First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res 11:4451–4459CrossRefPubMedGoogle Scholar
  90. 90.
    Wissing MD, van Leeuwen FWB, van der Pluijm G, Gelderblom H (2013) Radium-223 chloride: extending life in prostate cancer patients by treating bone metastases. Clin Cancer Res 19:5822–5827CrossRefPubMedGoogle Scholar
  91. 91.
    Vaidyanathan G, Zalutsky MR (2011) Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr Radiopharm 4:283–294CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Henriksen G, Alstad J, Hoff P, Larsen RH (2001) 223Ra for endotherapeutic applications prepared from an immobilized 227Ac/227Th source. Radiochim Acta 89:661–666CrossRefGoogle Scholar
  93. 93.
    Shirvani-Arani S, Bahrami-Samani A, Meftahi M, Jalilian AR, Ghannadi-Maragheh M (2013) Production, quality control and biodistribution studies of thulium-170-labeled ethylenediamine (tetramethylene phosphonic acid). Radiochim Acta 101:37–43CrossRefGoogle Scholar
  94. 94.
    Sahiralamkhan M, Chakravarty R, Chakraborty S, Kamaleshwaran KK, Shinto A, Dash A (2016) Irradiation parameters play a crucial role in the (n,γ) production of 170Tm suitable for clinical use in bone pain palliation. J Radioanal Nucl Chem 307:1105–1113CrossRefGoogle Scholar
  95. 95.
    Liu S, Edwards DS (2001) Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconj Chem 12:7–34CrossRefGoogle Scholar
  96. 96.
    Banerjee S, Pillai MRA, Knapp FF Jr (2015) Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev 115:2934–2974CrossRefPubMedGoogle Scholar
  97. 97.
    Das T, Chakraborty S, Sarma HD, Banerjee S (2008) 177Lu-DOTMP: a viable agent for palliative radiotherapy of painful bone metastasis. Radiochim Acta 96:55–61Google Scholar
  98. 98.
    Das T, Chakraborty S, Sarma HD, Banerjee S (2015) Formulation and evaluation of freeze-dried DOTMP kit for the preparation of clinical-scale 177Lu-DOTMP and 153Sm-DOTMP at the hospital radiopharmacy. Radiochim Acta 103:595–604CrossRefGoogle Scholar
  99. 99.
    Chakraborty S, Das T, Sarma HD, Venkatesh M, Banerjee S (2008) Comparative studies of 177Lu-EDTMP and 177Lu-DOTMP as potential agents for palliative radiotherapy of bone metastasis. Appl Radiat Isot 66:1196–1205CrossRefPubMedGoogle Scholar
  100. 100.
    Bryan ME, Lattimer JC, Henry CJ, Engelbrecht H, Ketring A, Cutler C (2009) Comparison of systemic toxicities of 177Lu-DOTMP and 153Sm-EDTMP administered intravenously at equivalent skeletal doses to normal dogs. J Nucl Med Technol 37:45–52CrossRefPubMedGoogle Scholar
  101. 101.
    Das T, Shinto A, Kamaleshwaran KK, Banerjee S (2016) Theranostic treatment of metastatic bone pain with 177Lu-DOTMP. Clin Nucl Med 41:966–967CrossRefPubMedGoogle Scholar
  102. 102.
    Lange R, ter Heine R, Knapp FF, de Klerk JMH, Bloemendal HJ, Hendrikse HN (2016) Pharmaceutical and clinical development of phosphonate-based radiopharmaceuticals for the targeted treatment of bone metastases. Bone 91:159–179CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Radiopharmaceuticals Chemistry Section, Radiochemistry and Isotope Group Bhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations