Clinical & Experimental Metastasis

, Volume 33, Issue 4, pp 385–399 | Cite as

Repositioning “old” drugs for new causes: identifying new inhibitors of prostate cancer cell migration and invasion

  • Esha T. Shah
  • Akanksha Upadhyaya
  • Lisa K. Philp
  • Tiffany Tang
  • Dubravka Skalamera
  • Jennifer Gunter
  • Colleen C. Nelson
  • Elizabeth D. Williams
  • Brett G. Hollier
Research Paper


The majority of prostate cancer (PCa) deaths occur due to the metastatic spread of tumor cells to distant organs. Currently, there is a lack of effective therapies once tumor cells have spread outside the prostate. It is therefore imperative to rapidly develop therapeutics to inhibit the metastatic spread of tumor cells. Gain of cell motility and invasive properties is the first step of metastasis and by inhibiting motility one can potentially inhibit metastasis. Using the drug repositioning strategy, we developed a cell-based multi-parameter primary screening assay to identify drugs that inhibit the migratory and invasive properties of metastatic PC-3 PCa cells. Following the completion of the primary screening assay, 33 drugs were identified from an FDA approved drug library that either inhibited migration or were cytotoxic to the PC-3 cells. Based on the data obtained from the subsequent validation studies, mitoxantrone hydrochloride, simvastatin, fluvastatin and vandetanib were identified as strong candidates that can inhibit both the migration and invasion of PC-3 cells without significantly affecting cell viability. By employing the drug repositioning strategy instead of a de novo drug discovery and development strategy, the identified drug candidates have the potential to be rapidly translated into the clinic for the management of men with aggressive forms of PCa.


Prostate cancer Drug repositioning Migration PC-3 Scratch wound assay IncuCyte™ 



This work was supported by funding from the Queensland Government Smart Futures Fellowship (to BGH); Australian Government Department of Health and the Movember Foundation and Prostate Cancer Foundation of Australia through a Movember Revolutionary Team Award.

Supplementary material

10585_2016_9785_MOESM1_ESM.pdf (399 kb)
Supplementary material 1 (PDF 398 kb)
10585_2016_9785_MOESM2_ESM.pdf (271 kb)
Supplementary material 2 (PDF 270 kb)
10585_2016_9785_MOESM3_ESM.pdf (448 kb)
Supplementary material 3 (PDF 447 kb)
10585_2016_9785_MOESM4_ESM.pdf (443 kb)
Supplementary material 4 (PDF 443 kb)
10585_2016_9785_MOESM5_ESM.pdf (1.3 mb)
Supplementary material 5 (PDF 1311 kb)
10585_2016_9785_MOESM6_ESM.pdf (216 kb)
Supplementary material 6 (PDF 215 kb)


  1. 1.
    IARC (2014) GLOBOCON: estimated cancer incidence, mortality, and prevalence worldwide in 2012. IARC, LyonGoogle Scholar
  2. 2.
    Mundy GR (2002) Metastasis: metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593CrossRefPubMedGoogle Scholar
  3. 3.
    Arya M, Bott SR, Shergill IS, Ahmed HU, Williamson M, Patel HR (2006) The metastatic cascade in prostate cancer. Surg Oncol 15(3):117–128CrossRefPubMedGoogle Scholar
  4. 4.
    Wells A (2005) Motility in tumour invasion and metastasis-an overview. In: Alan W (ed) Cell motility in cancer invasion and metastasis, vol 8., Cancer metastasis—biology and treatmentSpringer, Dordrecht, pp 1–23CrossRefGoogle Scholar
  5. 5.
    Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, Singer RH, Segall JE, Condeelis JS (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64(23):8585–8594CrossRefPubMedGoogle Scholar
  6. 6.
    Wyckoff JB, Segall JE, Condeelis JS (2000) The collection of the motile population of cells from a living tumor. Cancer Res 60(19):5401–5404PubMedGoogle Scholar
  7. 7.
    Cristofanilli MMD, Budd GTMD, Ellis MJMBP, Stopeck AMD, Matera JBSR, Miller MCBS, Reuben JMP, Doyle GVDDS, Allard WJP, Terstappen LWMMMDP, Hayes DFMD (2004) Circulating tumor tells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791CrossRefPubMedGoogle Scholar
  8. 8.
    Kola I (2008) The state of innovation in drug development. Clin Pharmacol Ther 83(2):227–230CrossRefPubMedGoogle Scholar
  9. 9.
    Ashburn TT, Thor KB, Nature Publishing Group (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683CrossRefPubMedGoogle Scholar
  10. 10.
    Mullard A (2014) New drugs cost USD 2.6 billion to develop. Nat Rev Drug Discov 13(12):877Google Scholar
  11. 11.
    Zikai W, Yong W, Luonan C (2012) A new method to identify repositioned drugs for prostate cancer. In: Systems biology (ISB), 2012 IEEE 6th international conference on 18–20 Aug 2012, pp 280–284Google Scholar
  12. 12.
    Oprea TI, Nielsen SK, Ursu O, Yang JJ, Taboureau O, Mathias SL, Kouskoumvekaki L, Sklar LA, Bologa CG (2011) Associating drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-aided drug repurposing. Mol Inform 30(2–3):100–111CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Deftereos SN, Andronis C, Friedla EJ, Persidis A, Persidis A (2011) Drug repurposing and adverse event prediction using high-throughput literature analysis. Wiley Interdiscip Rev Syst Biol Med 3(3):323–334CrossRefPubMedGoogle Scholar
  14. 14.
    Roddy M, Nelson T, Appledorn DM, Groppi V (2013) CellPlayer™ 96-Well kinetic cell migration and invasion assays. Essen BioScience (application note).
  15. 15.
    Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73CrossRefPubMedGoogle Scholar
  16. 16.
    Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, Rao JS (2005) RNA Interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem 280(43):36529–36540CrossRefPubMedGoogle Scholar
  17. 17.
    Kang SG, Chung H, Yoo YD, Lee JG, Choi YI, Yu YS (2001) Mechanism of growth inhibitory effect of Mitomycin-C on cultured human retinal pigment epithelial cells: apoptosis and cell cycle arrest. Curr Eye Res 22(3):174–181CrossRefPubMedGoogle Scholar
  18. 18.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17CrossRefGoogle Scholar
  19. 19.
    Rudmann DG (2013) On-target and off-target-based toxicologic effects. Toxicol Pathol 41(2):310–314. doi: 10.1177/0192623312464311 CrossRefPubMedGoogle Scholar
  20. 20.
    MacDonald ML, Lamerdin J, Owens S, Keon BH, Bilter GK, Shang Z, Huang Z, Yu H, Dias J, Minami T, Michnick SW, Westwick JK (2006) Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat Chem Biol 2(6):329–337CrossRefPubMedGoogle Scholar
  21. 21.
    Raghavan D, Koczwara B, Javle M (1997) Evolving strategies of cytotoxic chemotherapy for advanced prostate cancer. Eur J Cancer 33(4):566–574CrossRefPubMedGoogle Scholar
  22. 22.
    Lara PN, Meyers FJ (1999) Treatment options in androgen-independent prostate cancer. Cancer Invest 17(2):137–144CrossRefPubMedGoogle Scholar
  23. 23.
    Shenkenberg TD, Von Hoff DD (1986) Mitoxantrone: a new anticancer drug with significant clinical activity. Ann Intern Med 105(1):67CrossRefPubMedGoogle Scholar
  24. 24.
    Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, Armitage GR, Wilson JJ, Venner PM, Coppin C (1996) Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 14(6):1756–1764PubMedGoogle Scholar
  25. 25.
    Ernst D, Tannock I, Winquist E, Venner P, Reyno L, Moore M, Chi K, Ding K, Elliott C, Parulekar W (2003) Randomized, double-blind, controlled trial of mitoxantrone/prednisone and clodronate versus mitoxantrone/prednisone and placebo in patients with hormone-refractory prostate cancer and pain. J Clin Oncol 21(17):3335–3342CrossRefPubMedGoogle Scholar
  26. 26.
    Endo A (2010) A historical perspective on the discovery of statins. Proc Jpn Acad Ser B Phys Biol Sci 86(5):484–493. doi: 10.2183/pjab.86.484 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kochuparambil ST, Al-Husein B, Goc A, Soliman S, Somanath PR (2011) Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of akt and reduced prostate-specific antigen expression. J Pharmacol Exp Ther 336(2):496–505. doi: 10.1124/jpet.110.174870 CrossRefPubMedGoogle Scholar
  28. 28.
    Kim JH, Cox ME, Wasan KM (2014) Effect of simvastatin on castration-resistant prostate cancer cells. Lipids Health Dis 13(56):1–19Google Scholar
  29. 29.
    Lustman A, Nakar S, Cohen AD, Vinker S (2014) Statin use and incident prostate cancer risk: does the statin brand matter? A population-based cohort study. Prostate Cancer Prostatic Dis 17:6CrossRefPubMedGoogle Scholar
  30. 30.
    Wells SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, Read J, Langmuir P, Ryan AJ, Schlumberger MJ (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30(2):134–141. doi: 10.1200/jco.2011.35.5040 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Heymach J, Lockwood S, Herbst R, Johnson B, Ryan A (2014) EGFR biomarkers predict benefit from vandetanib in combination with docetaxel in a randomized phase III study of second-line treatment of patients with advanced non-small cell lung cancer. Ann Oncol 25(10):1941–1948CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Marangoni E, Hatem R, Labiod D, Chateau-Joubert S, El Botty R, Servely J-L, De Plater L, Bièche I (2015) Vandetanib as a potential new treatment for ER negative breast cancers. Cancer Res 75(15 Supplement):1687CrossRefGoogle Scholar
  33. 33.
    Horti J, Widmark A, Stenzl A, Federico MH, Abratt RP, Sanders N, Pover GM, Bodrogi I (2009) A randomized, double-blind, placebo-controlled phase II study of vandetanib plus docetaxel/prednisolone in patients with hormone-refractory prostate cancer. Cancer Biother Radiopharm 24(2):175–180CrossRefPubMedGoogle Scholar
  34. 34.
    Vogel CL, Johnston MA, Capers C, Braccia D (2014) Toremifene for breast cancer: a review of 20 years of data. Clin Breast Cancer 14(1):1–9CrossRefPubMedGoogle Scholar
  35. 35.
    Steiner M, Patterson A, Israeli R, Barnette K, Boger R, Price D (2004) Toremifene citrate versus placebo for treatment of bone loss and other complications of androgen deprivation therapy in patients with prostate cancer. In: ASCO annual meeting proceedings, vol 14, p 4597Google Scholar
  36. 36.
    Smith MR, Morton RA, Barnette KG, Sieber PR, Malkowicz SB, Rodriguez D, Hancock ML, Steiner MS (2010) Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate cancer. J Urol 184(4):1316–1321CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21(3):274–281CrossRefPubMedGoogle Scholar
  38. 38.
    Wu H-C, Hsieh J-T, Gleave ME, Brown NM, Pathak S, Chung LWK (1994) Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer 57(3):406–412CrossRefPubMedGoogle Scholar
  39. 39.
    Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43(4):1809–1818PubMedGoogle Scholar
  40. 40.
    Hulkower KI, Herber RL (2011) Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 3(1):107–124CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, Dolznig H (2013) In vitro cell migration and invasion assays. Mutat Res Rev Mutat Res 752(1):10–24CrossRefGoogle Scholar
  42. 42.
    Simpson KJ, Selfors LM, Bui J, Reynolds A, Leake D, Khvorova A, Brugge JS (2008) Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat Cell Biol 10(9):1027–1038CrossRefPubMedGoogle Scholar
  43. 43.
    Yarrow JC, Totsukawa G, Charras GT, Mitchison TJ (2005) Screening for cell migration inhibitors via automated microscopy reveals a rho-kinase inhibitor. Chem Biol 12(3):385–395CrossRefPubMedGoogle Scholar
  44. 44.
    Smolen GA, Zhang J, Zubrowski MJ, Edelman EJ, Luo B, Yu M, Ng LW, Scherber CM, Schott BJ, Ramaswamy S (2010) A genome-wide RNAi screen identifies multiple RSK-dependent regulators of cell migration. Genes Dev 24(23):2654–2665CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sheffield JB (2007) ImageJ, a useful tool for biological image processing and analysis. Microsc Microanal 13(S02):200–201Google Scholar
  46. 46.
    Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100–R100CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Esha T. Shah
    • 1
    • 3
  • Akanksha Upadhyaya
    • 1
    • 3
  • Lisa K. Philp
    • 1
    • 3
  • Tiffany Tang
    • 1
  • Dubravka Skalamera
    • 2
    • 3
  • Jennifer Gunter
    • 1
    • 3
  • Colleen C. Nelson
    • 1
    • 3
  • Elizabeth D. Williams
    • 1
    • 3
  • Brett G. Hollier
    • 1
    • 3
  1. 1.Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
  2. 2.The University of Queensland Diamantina InstituteUniversity of QueenslandBrisbaneAustralia
  3. 3.Translational Research InstituteBrisbaneAustralia

Personalised recommendations