Clinical & Experimental Metastasis

, Volume 32, Issue 8, pp 799–817 | Cite as

Anti-metastatic action of FAK inhibitor OXA-11 in combination with VEGFR-2 signaling blockade in pancreatic neuroendocrine tumors

  • Ingrid Moen
  • Matthew Gebre
  • Vanesa Alonso-Camino
  • Debbie Chen
  • David Epstein
  • Donald M. McDonald
Research Paper


The present study sought to determine the anti-tumor effects of OXA-11, a potent, novel small-molecule amino pyrimidine inhibitor (1.2 pM biochemical IC50) of focal adhesion kinase (FAK). In studies of cancer cell lines, OXA-11 inhibited FAK phosphorylation at phospho-tyrosine 397 with a mechanistic IC50 of 1 nM in TOV21G tumor cells, which translated into functional suppression of proliferation in 3-dimensional culture with an EC50 of 9 nM. Studies of OXA-11 activity in TOV21G tumor-cell xenografts in mice revealed a pharmacodynamic EC50 of 1.8 nM, indicative of mechanistic inhibition of pFAK [Y397] in these tumors. OXA-11 inhibited TOV21G tumor growth in a dose-dependent manner and also potentiated effects of cisplatin on tumor cell proliferation and apoptosis in vitro and on tumor growth in mice. Studies of pancreatic neuroendocrine tumors in RIP-Tag2 transgenic mice revealed OXA-11 suppression of pFAK [Y397] and pFAK [Y861] in tumors and liver. OXA-11 given daily from age 14 to 17 weeks reduced tumor vascularity, invasion, and when given together with the anti-VEGFR-2 antibody DC101 reduced the incidence, abundance, and size of liver metastases. Liver micrometastases were found in 100 % of mice treated with vehicle, 84 % of mice treated with OXA-11, and 79 % of mice treated with DC101 (19–24 mice per group). In contrast, liver micrometastases were found in only 52 % of 21 mice treated with OXA-11 plus DC101, and those present were significantly smaller and less numerous. Together, these findings indicate that OXA-11 is a potent and selective inhibitor of FAK phosphorylation in vitro and in vivo. OXA-11 slows tumor growth, potentiates the anti-tumor actions of cisplatin and—when combined with VEGFR-2 blockade—reduces metastasis of pancreatic neuroendocrine tumors in RIP-Tag2 mice.


Focal adhesion kinase Cisplatin Liver metastasis Pancreatic islet cell tumors RIP-Tag2 transgenic mice Vascular endothelial growth factor receptor-2 



We gratefully acknowledge the important contributions by Elisabeth Buck, Andrew Crew, and Maryland Franklin in performing the experiments with OXA-11 at OSI Pharmaceuticals. We also thank OSI for supplying OXA-11 for the studies performed at UCSF. The authors thank Maximilian Nitschké and Barbara Sennino for critical review of the manuscript and Brian Schriver for genotyping the RIP-Tag2 mice at UCSF. This work was supported in part by National Heart, Lung, and Blood Institute grants HL24136, HL59157, and HL127402 from the US National Institutes of Health (to DMcD), funding from OSI and AngelWorks Foundation (to DMcD), and an Overseas Research Fellowship from University of Bergen, Norway (to IM).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest to disclose. DE is a former employee of OSI Pharmaceuticals.

Supplementary material

10585_2015_9752_MOESM1_ESM.docx (51 kb)
Supplementary material 1 (DOCX 51 kb)


  1. 1.
    Golubovskaya VM (2014) Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci 19:687–706CrossRefGoogle Scholar
  2. 2.
    Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416CrossRefPubMedGoogle Scholar
  3. 3.
    Gabarra-Niecko V, Schaller MD, Dunty JM (2003) FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev 22:359–374CrossRefPubMedGoogle Scholar
  4. 4.
    Sood AK, Coffin JE, Schneider GB, Fletcher MS, DeYoung BR, Gruman LM, Gershenson DM, Schaller MD, Hendrix MJ (2004) Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol 165:1087–1095PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC (2005) The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer 5:505–515CrossRefPubMedGoogle Scholar
  6. 6.
    Sulzmaier FJ, Jean C, Schlaepfer DD (2014) FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 14:598–610PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68CrossRefPubMedGoogle Scholar
  8. 8.
    Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J, Coleman K, Yao L, Martinez-Alsina L, Lorenzen M, Berliner M, Luzzio M, Patel N, Schmitt E, LaGreca S, Jani J, Wessel M, Marr E, Griffor M, Vajdos F (2008) Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 68:1935–1944CrossRefPubMedGoogle Scholar
  9. 9.
    Bagi CM, Roberts GW, Andresen CJ (2008) Dual focal adhesion kinase/Pyk2 inhibitor has positive effects on bone tumors: implications for bone metastases. Cancer 112:2313–2321CrossRefPubMedGoogle Scholar
  10. 10.
    Schaller MD (2010) Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 123:1007–1013CrossRefPubMedGoogle Scholar
  11. 11.
    Benlimame N, He Q, Jie S, Xiao D, Xu YJ, Loignon M, Schlaepfer DD, Alaoui-Jamali MA (2005) FAK signaling is critical for ErbB-2/ErbB-3 receptor cooperation for oncogenic transformation and invasion. J Cell Biol 171:505–516PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Li S, Dong W, Zong Y, Yin W, Jin G, Hu Q, Huang X, Jiang W, Hua ZC (2007) Polyethylenimine-complexed plasmid particles targeting focal adhesion kinase function as melanoma tumor therapeutics. Mol Ther 15:515–523CrossRefPubMedGoogle Scholar
  13. 13.
    Lahlou H, Sanguin-Gendreau V, Zuo D, Cardiff RD, McLean GW, Frame MC, Muller WJ (2007) Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci USA 104:20302–20307PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Wendt MK, Schiemann WP (2009) Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-beta signaling and metastasis. Breast Cancer Res 11(1–16):R68PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Walsh C, Tanjoni I, Uryu S, Tomar A, Nam JO, Luo H, Phillips A, Patel N, Kwok C, McMahon G, Stupack DG, Schlaepfer DD (2010) Oral delivery of PND-1186 FAK inhibitor decreases tumor growth and spontaneous breast to lung metastasis in pre-clinical models. Cancer Biol Ther 9:778–790PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Stokes JB, Adair SJ, Slack-Davis JK, Walters DM, Tilghman RW, Hershey ED, Lowrey B, Thomas KS, Bouton AH, Hwang RF, Stelow EB, Parsons JT, Bauer TW (2011) Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol Cancer Ther 10:2135–2145PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Ward KK, Tancioni I, Lawson C, Miller NL, Jean C, Chen XL, Uryu S, Kim J, Tarin D, Stupack DG, Plaxe SC, Schlaepfer DD (2013) Inhibition of focal adhesion kinase (FAK) activity prevents anchorage-independent ovarian carcinoma cell growth and tumor progression. Clin Exp Metastasis 30:579–594PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Ferrara N, Mass RD, Campa C, Kim R (2007) Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu Rev Med 58:491–504CrossRefPubMedGoogle Scholar
  19. 19.
    Aprile G, Rijavec E, Fontanella C, Rihawi K, Grossi F (2014) Ramucirumab: preclinical research and clinical development. Onco Targets Ther 7:1997–2006PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Ciombor KK, Berlin J (2014) Aflibercept—a decoy VEGF receptor. Curr Oncol Rep 16:368CrossRefPubMedGoogle Scholar
  21. 21.
    Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V, Tabruyn SP, You WK, Chapman HA, Christensen JG, Aftab DT, McDonald DM (2012) Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2:270–287PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Sennino B, Ishiguro-Oonuma T, Schriver BJ, Christensen JG, McDonald DM (2013) Inhibition of c-Met reduces lymphatic metastasis in RIP-Tag2 transgenic mice. Cancer Res 73:3692–3703PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Maione F, Capano S, Regano D, Zentilin L, Giacca M, Casanovas O, Bussolino F, Serini G, Giraudo E (2012) Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. J Clin Invest 122:1832–1848PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Qi JH, Claesson-Welsh L (2001) VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Exp Cell Res 263:173–182CrossRefPubMedGoogle Scholar
  27. 27.
    Masson-Gadais B, Houle F, Laferriere J, Huot J (2003) Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 8:37–52PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Lechertier T, Hodivala-Dilke K (2011) Focal adhesion kinase and tumour angiogenesis. J Pathol 226:404–412CrossRefPubMedGoogle Scholar
  29. 29.
    Bagi CM, Christensen J, Cohen DP, Roberts WG, Wilkie D, Swanson T, Tuthill T, Andresen CJ (2009) Sunitinib and PF-562,271 (FAK/Pyk2 inhibitor) effectively block growth and recovery of human hepatocellular carcinoma in a rat xenograft model. Cancer Biol Ther 8:856–865CrossRefPubMedGoogle Scholar
  30. 30.
    Appari RD, Chen X, Chilukuri R, Crew AP, Dong H, Ferraro C, Foreman K, Gupta RC, Li A-H, Sherman D, Stolz KM, Volk B, Zahler R (2013) Amino pyrimidine anticancer compounds. Patent No: US008399433B2. Issued by: United States Patent and Trademark Office. Issue Date: March 19, 2013. Assignee: OSI Pharmaceuticals, LLC, Farmingdale, pp 1–310Google Scholar
  31. 31.
    Witte L, Hicklin DJ, Zhu Z, Pytowski B, Kotanides H, Rockwell P, Bohlen P (1998) Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev 17:155–161CrossRefPubMedGoogle Scholar
  32. 32.
    Abu-Ghazaleh R, Kabir J, Jia H, Lobo M, Zachary I (2001) Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochem J 360:255–264PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ, Sheppard D, Cheresh DA (2002) Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J Cell Biol 157:149–160PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Provencher DM, Lounis H, Champoux L, Tetrault M, Manderson EN, Wang JC, Eydoux P, Savoie R, Tonin PN, Mes-Masson AM (2000) Characterization of four novel epithelial ovarian cancer cell lines. In Vitro Cell Dev Biol Anim 36:357–361CrossRefPubMedGoogle Scholar
  35. 35.
    Karam AK, Santiskulvong C, Fekete M, Zabih S, Eng C, Dorigo O (2010) Cisplatin and PI3kinase inhibition decrease invasion and migration of human ovarian carcinoma cells and regulate matrix-metalloproteinase expression. Cytoskeleton (Hoboken) 67:535–544Google Scholar
  36. 36.
    Tonin PN, Hudson TJ, Rodier F, Bossolasco M, Lee PD, Novak J, Manderson EN, Provencher D, Mes-Masson AM (2001) Microarray analysis of gene expression mirrors the biology of an ovarian cancer model. Oncogene 20:6617–6626CrossRefPubMedGoogle Scholar
  37. 37.
    Shah NR, Tancioni I, Ward KK, Lawson C, Chen XL, Jean C, Sulzmaier FJ, Uryu S, Miller NL, Connolly DC, Schlaepfer DD (2014) Analyses of merlin/NF2 connection to FAK inhibitor responsiveness in serous ovarian cancer. Gynecol Oncol 134:104–111PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Yoon H, Choi YL, Song JY, Do I, Kang SY, Ko YH, Song S, Kim BG (2014) Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines. PLoS ONE 9:e88587PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    He Y, Wu AC, Harrington BS, Davies CM, Wallace SJ, Adams MN, Palmer JS, Roche DK, Hollier BG, Westbrook TF, Hamidi H, Konecny GE, Winterhoff B, Chetty NP, Crandon AJ, Oliveira NB, Shannon CM, Tinker AV, Gilks CB, Coward JI, Lumley JW, Perrin LC, Armes JE, Hooper JD (2015) Elevated CDCP1 predicts poor patient outcome and mediates ovarian clear cell carcinoma by promoting tumor spheroid formation, cell migration and chemoresistance. Oncogene. doi: 10.1038/onc.2015.101 Google Scholar
  40. 40.
    Sutherland RL, Hall RE, Pang GY, Musgrove EA, Clarke CL (1988) Effect of medroxyprogesterone acetate on proliferation and cell cycle kinetics of human mammary carcinoma cells. Cancer Res 48:5084–5091PubMedGoogle Scholar
  41. 41.
    Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315:115–122CrossRefPubMedGoogle Scholar
  42. 42.
    Tavora B, Batista S, Reynolds LE, Jadeja S, Robinson S, Kostourou V, Hart I, Fruttiger M, Parsons M, Hodivala-Dilke KM (2010) Endothelial FAK is required for tumour angiogenesis. EMBO Mol Med 2:516–528PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Halder J, Lin YG, Merritt WM, Spannuth WA, Nick AM, Honda T, Kamat AA, Han LY, Kim TJ, Lu C, Tari AM, Bornmann W, Fernandez A, Lopez-Berestein G, Sood AK (2007) Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma. Cancer Res 67:10976–10983CrossRefPubMedGoogle Scholar
  44. 44.
    Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Tavora B, Reynolds LE, Batista S, Demircioglu F, Fernandez I, Lechertier T, Lees DM, Wong PP, Alexopoulou A, Elia G, Clear A, Ledoux A, Hunter J, Perkins N, Gribben JG, Hodivala-Dilke KM (2014) Endothelial-cell FAK targeting sensitizes tumours to DNA-damaging therapy. Nature 514:112–116PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Weis SM, Lim ST, Lutu-Fuga KM, Barnes LA, Chen XL, Gothert JR, Shen TL, Guan JL, Schlaepfer DD, Cheresh DA (2008) Compensatory role for Pyk2 during angiogenesis in adult mice lacking endothelial cell FAK. J Cell Biol 181:43–50PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Kostourou V, Lechertier T, Reynolds LE, Lees DM, Baker M, Jones DT, Tavora B, Ramjaun AR, Birdsey GM, Robinson SD, Parsons M, Randi AM, Hart IR, Hodivala-Dilke K (2013) FAK-heterozygous mice display enhanced tumour angiogenesis. Nat Commun 4(1–11):2020PubMedCentralPubMedGoogle Scholar
  48. 48.
    Falcon BL, Barr S, Gokhale PC, Chou J, Fogarty J, Depeille P, Miglarese M, Epstein DM, McDonald DM (2011) Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors. Cancer Res 71:1573–1583PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Kurio N, Shimo T, Fukazawa T, Okui T, Hassan NM, Honami T, Horikiri Y, Hatakeyama S, Takaoka M, Naomoto Y, Sasaki A (2012) Anti-tumor effect of a novel FAK inhibitor TAE226 against human oral squamous cell carcinoma. Oral Oncol 48:1159–1170CrossRefPubMedGoogle Scholar
  50. 50.
    Golubovskaya VM, Figel S, Ho BT, Johnson CP, Yemma M, Huang G, Zheng M, Nyberg C, Magis A, Ostrov DA, Gelman IH, Cance WG (2012) A small molecule focal adhesion kinase (FAK) inhibitor, targeting Y397 site: 1-(2-hydroxyethyl)-3,5,7-triaza-1-azoniatricyclo [,7)]decane; bromide effectively inhibits FAK autophosphorylation activity and decreases cancer cell viability, clonogenicity and tumor growth in vivo. Carcinogenesis 33:1004–1013PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Golubovskaya VM, Huang G, Ho B, Yemma M, Morrison CD, Lee J, Eliceiri BP, Cance WG (2013) Pharmacologic blockade of FAK autophosphorylation decreases human glioblastoma tumor growth and synergizes with temozolomide. Mol Cancer Ther 12:162–172PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309CrossRefPubMedGoogle Scholar
  53. 53.
    Brunton VG, Frame MC (2008) Src and focal adhesion kinase as therapeutic targets in cancer. Curr Opin Pharmacol 8:427–432CrossRefPubMedGoogle Scholar
  54. 54.
    Lim ST, Mikolon D, Stupack DG, Schlaepfer DD (2008) FERM control of FAK function: implications for cancer therapy. Cell Cycle 7:2306–2314PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Stone RL, Baggerly KA, Armaiz-Pena GN, Kang Y, Sanguino AM, Thanapprapasr D, Dalton HJ, Bottsford-Miller J, Zand B, Akbani R, Diao L, Nick AM, DeGeest K, Lopez-Berestein G, Coleman RL, Lutgendorf S, Sood AK (2014) Focal adhesion kinase: an alternative focus for anti-angiogenesis therapy in ovarian cancer. Cancer Biol Ther 15:919–929PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Shen TL, Park AY, Alcaraz A, Peng X, Jang I, Koni P, Flavell RA, Gu H, Guan JL (2005) Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. J Cell Biol 169:941–952PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Braren R, Hu H, Kim YH, Beggs HE, Reichardt LF, Wang R (2006) Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation. J Cell Biol 172:151–162PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Ilic D, Kovacic B, McDonagh S, Jin F, Baumbusch C, Gardner DG, Damsky CH (2003) Focal adhesion kinase is required for blood vessel morphogenesis. Circ Res 92:300–307CrossRefPubMedGoogle Scholar
  59. 59.
    Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660CrossRefPubMedGoogle Scholar
  60. 60.
    Gogate PN, Ethirajan M, Kurenova EV, Magis AT, Pandey RK, Cance WG (2014) Design, synthesis, and biological evaluation of novel FAK scaffold inhibitors targeting the FAK-VEGFR3 protein–protein interaction. Eur J Med Chem 80:154–166PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Stessels F, Van den Eynden G, Van der Auwera I, Salgado R, Van den Heuvel E, Harris AL, Jackson DG, Colpaert CG, van Marck EA, Dirix LY, Vermeulen PB (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90:1429–1436PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Zhao C, Yang H, Shi H, Wang X, Chen X, Yuan Y, Lin S, Wei Y (2011) Distinct contributions of angiogenesis and vascular co-option during the initiation of primary microtumors and micrometastases. Carcinogenesis 32:1143–1150CrossRefPubMedGoogle Scholar
  63. 63.
    Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, Gatter KC, Pezzella F (2013) Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med 2:427–436PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    von Sengbusch A, Gassmann P, Fisch KM, Enns A, Nicolson GL, Haier J (2005) Focal adhesion kinase regulates metastatic adhesion of carcinoma cells within liver sinusoids. Am J Pathol 166:585–596CrossRefGoogle Scholar
  65. 65.
    Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, Goka E, Lim ST, Tomar A, Tancioni I, Uryu S, Guan JL, Acevedo LM, Weis SM, Cheresh DA, Schlaepfer DD (2012) VEGF-induced vascular permeability is mediated by FAK. Dev Cell 22:146–157PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Jean C, Chen XL, Nam JO, Tancioni I, Uryu S, Lawson C, Ward KK, Walsh CT, Miller NL, Ghassemian M, Turowski P, Dejana E, Weis S, Cheresh DA, Schlaepfer DD (2014) Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J Cell Biol 204:247–263PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ingrid Moen
    • 1
    • 2
    • 4
  • Matthew Gebre
    • 1
    • 5
  • Vanesa Alonso-Camino
    • 1
    • 6
  • Debbie Chen
    • 1
    • 7
  • David Epstein
    • 3
  • Donald M. McDonald
    • 1
  1. 1.UCSF Helen Diller Family Comprehensive Cancer Center, Cardiovascular Research Institute, and Department of AnatomyUniversity of California - San FranciscoSan FranciscoUSA
  2. 2.Department of BiomedicineUniversity of BergenBergenNorway
  3. 3.Cancer & Stem Cell Biology ProgramDuke-NUS Graduate Medical SchoolSingaporeSingapore
  4. 4.Oxy SolutionsOsloNorway
  5. 5.School of MedicineStony Brook UniversityStony BrookUSA
  6. 6.Department of Molecular MedicineMayo ClinicRochesterUSA
  7. 7.School of MedicineUniversity of California - DavisSacramentoUSA

Personalised recommendations