Skip to main content

Advertisement

Log in

RhoGDI2 is associated with HGF-mediated tumor invasion through VEGF in stomach cancer

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

RhoGDP dissociation inhibitor 2 (RhoGDI2) has been identified as a regulator of tumor metastasis; however, its role in cancer remains controversial. The aims of this study were to analyze RhoGDI2 in gastric cancer growth and metastasis, and to determine its possible signaling pathway. The level of expression of RhoGDI2 was further confirmed by real time RT-RCR and Western blot analysis. Transfection of cells with RhoGDI2 shRNA resulted in no effects of cell proliferation, as determined with MTT assays. In an in vitro invasion assay, significantly fewer cells transfected with RhoGDI2 shRNA, compared with control cells, were able to invade across a Matrigel membrane barrier. The role of RhoGDI2 in the level of HGF-induced up-regulation of vascular endothelial growth factor (VEGF) was measured by knockdown of RhoGDI2 with RhoGDI2 shRNA and a chromatic immuno-precipitation assay. The levels of RhoGDI2 and VEGF were up-regulated in cells treated with HGF in a dose-dependent manner. HGF-induced up-regulation of VEGF was repressed by RhoGDI2 knockdown. HGF-induced upregulation of phosphorylated ERK and P38 levels was inhibited in RhoGDI2 knockdown cells. HGF enhanced the binding activity of RhoGDI2 to the VEGF promoter in control cells, but not in RhoGDI2-shRNA cells. Findings of this study also showed a statistically significant difference in the mean RhoGDI2 level before and after surgery (p < 0.01) and the mean level of RhoGDI2 before surgery showed a statistically significant difference depending on lymphatic, neural invasion and stage (p < 0.05). In conclusion, RhoGDI2 might play an important role in up-regulation of VEGF induced by HGF and contributes to HGF-mediated tumor invasion and metastasis, which may serve as a promising target for gastric cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bryan BA, Dennstedt E, Mitchell DC, Walshe TE, Noma K, Loureiro R, Saint-Geniez M, Campaigniac JP, Liao JK, D’Amore PA (2010) RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J 24(9):3186–3195. doi:10.1096/fj.09-145102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V, Qi JH, Claesson-Welsh L, Alitalo K (1998) Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 95(24):14389–14394

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D, Dowdy SF, Hruska KA (2000) Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem 275(16):11993–12002

    Article  PubMed  CAS  Google Scholar 

  4. Kumar CC (1998) Signaling by integrin receptors. Oncogene 17(11):1365–1373

    Article  PubMed  CAS  Google Scholar 

  5. Soga N, Namba N, McAllister S, Cornelius L, Teitelbaum SL, Dowdy SF, Kawamura J, Hruska KA (2001) Rho family GTPases regulate VEGF-stimulated endothelial cell motility. Exp Cell Res 269(1):73–87

    Article  PubMed  CAS  Google Scholar 

  6. Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60(2):203–212

    PubMed  CAS  Google Scholar 

  7. Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D, Dowdy SF, Hruska KA (2000) Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem 275(16):11993–12002

    Article  PubMed  CAS  Google Scholar 

  8. Zhao Z, Manser E (2005) PAK and other Rho-associated kinases–effectors with surprisingly diverse mechanisms of regulation. Biochem J 386(Pt 2):201

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Howe A, Aplin AE, Alahari SK, Juliano R (1998) Integrin signaling and cell growth control. Curr Opin Cell Biol 10(2):220–231

    Article  PubMed  CAS  Google Scholar 

  10. Olofsson B (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 11(8):545–554

    Article  PubMed  CAS  Google Scholar 

  11. DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15(7):356–363

    Article  PubMed  CAS  Google Scholar 

  12. Bryan BA, Dennstedt E, Mitchell DC, Walshe TE, Noma K, Loureiro R, Saint-Geniez M, Campaigniac J-P, Liao JK, D’Amore PA (2010) RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J 24(9):3186–3195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Mustonen T, Alitalo K (1995) Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 129(4):895–898

    Article  PubMed  CAS  Google Scholar 

  14. Fujita A, Shida A, Fujioka S, Kurihara H, Okamoto T, Yanaga K (2012) Clinical significance of Rho GDP dissociation inhibitor 2 in colorectal carcinoma. Int J Clin Oncol 17(2):137–142

    Article  PubMed  CAS  Google Scholar 

  15. Tapper J, Kettunen E, El-Rifai We, Seppälä M, Andersson LC, Knuutila S (2001) Changes in gene expression during progression of ovarian carcinoma. Cancer Genet Cytogenet 128(1):1–6

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Y, Zhang B (2006) D4-GDI, a Rho GTPase regulator, promotes breast cancer cell invasiveness. Cancer Res 66(11):5592–5598

    Article  PubMed  CAS  Google Scholar 

  17. Seraj MJ, Harding MA, Gildea JJ, Welch DR, Theodorescu D (2000) The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin Exp Metastasis 18(6):519–525

    Article  PubMed  CAS  Google Scholar 

  18. Nakagami H, Morishita R, Yamamoto K, Taniyama Y, Aoki M, Matsumoto K, Nakamura T, Kaneda Y, Horiuchi M, Ogihara T (2001) Mitogenic and antiapoptotic actions of hepatocyte growth factor through ERK, STAT3, and AKT in endothelial cells. Hypertension 37(2):581–586

    Article  PubMed  CAS  Google Scholar 

  19. Steeg PS (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3(1):55–63

    Article  PubMed  CAS  Google Scholar 

  20. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501

    Article  PubMed  CAS  Google Scholar 

  21. Guo D, Jia Q, Song H-Y, Warren RS, Donner DB (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains Association with endothelial cell proliferation. J Biol Chem 270(12):6729–6733

    Article  PubMed  CAS  Google Scholar 

  22. Eliceiri BP, Cheresh DA (1999) The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103(9):1227–1230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676

    Article  PubMed  CAS  Google Scholar 

  24. Pearson JD (1991) Endothelial cell biology. Radiology 179(1):9–14

    Article  PubMed  CAS  Google Scholar 

  25. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    CAS  Google Scholar 

  26. Hoang MV, Whelan MC, Senger DR (2004) Rho activity critically and selectively regulates endothelial cell organization during angiogenesis. Proc Natl Acad Sci USA 101(7):1874–1879

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Park H-J, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB (2002) 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res 91(2):143–150

    Article  PubMed  CAS  Google Scholar 

  28. Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11(18):2295–2322

    Article  PubMed  Google Scholar 

  29. Scherle P, Behrens T, Staudt LM (1993) Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes. Proc Natl Acad Sci USA 90(16):7568–7572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Yin L, Schwartzberg P, Scharton-kerstenj TM, Staudt L, Lenardo M (1997) Immune responses in mice deficient in Ly-GDI, a lymphoid-specific regulator of Rho GTPases. Mol Immunol 34(6):481–491

    Article  PubMed  CAS  Google Scholar 

  31. Gildea JJ, Seraj MJ, Oxford G, Harding MA, Hampton GM, Moskaluk CA, Frierson HF, Conaway MR, Theodorescu D (2002) RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 62(22):6418–6423

    PubMed  CAS  Google Scholar 

  32. Theodorescu D, Sapinoso L, Conaway M, Oxford G, Hampton G, Frierson H (2004) Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clin Cancer Res 10(11):3800–3806

    Article  PubMed  CAS  Google Scholar 

  33. Cho HJ, Baek KE, Park S-M, Kim I-K, Choi Y-L, Cho H-J, Nam I-K, Hwang EM, Park J-Y, Han JY (2009) RhoGDI2 expression is associated with tumor growth and malignant progression of gastric cancer. Clin Cancer Res 15(8):2612–2619

    Article  PubMed  CAS  Google Scholar 

  34. Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V, Qi J-H, Claesson-Welsh L, Alitalo K (1998) Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci 95(24):14389–14394

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Su J-L, Yang P-C, Shih J-Y, Yang C-Y, Wei L-H, Hsieh C-Y, Chou C-H, Jeng Y-M, Wang M-Y, Chang K-J (2006) The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 9(3):209–223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, S.A., Kim, M.K., Lee, K.H. et al. RhoGDI2 is associated with HGF-mediated tumor invasion through VEGF in stomach cancer. Clin Exp Metastasis 31, 805–815 (2014). https://doi.org/10.1007/s10585-014-9671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9671-4

Keywords

Navigation