Skip to main content

Advertisement

Log in

L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The L1CAM cell adhesion/recognition molecule (L1, CD171) and fibroblast growth factor receptor (FGFR) both are expressed by human high-grade glioma cells, but their potential actions in controlling cell behavior have not been linked. L1 actions in cancer cells have been attributed mainly to integrin receptors, and we demonstrated previously that L1-stimulated glioma cell migration correlates with integrin expression, increased focal adhesion kinase activation and focal complex turnover. Our analyses of datasets revealed FGFR is overexpressed in glioma regardless of grade, while ADAM10 metalloprotease expression increases with glioma grade. Here, we used dominant-negative and short hairpin RNA approaches to inhibit the activation of FGFR1 and expression of L1, respectively. An L1 peptide that inhibits L1-FGFR interaction and PD173074, a chemical inhibitor of FGFR1 activity, also were used to elucidate the involvement of L1-FGFR interactions on glioma cell behavior. Time-lapse cell motility studies and flow cytometry cell cycle analyses showed that L1 operates to increase glioma cell motility and proliferation through FGFR activation. Shutdown of both L1 expression and FGFR activity in glioma cells resulted in a complete termination of cell migration in vitro. These studies show for the first time that soluble L1 ectodomain (L1LE) acts on glioma cells through FGFRs, and that FGFRs are used by glioma cells for increasing motility as well as proliferation in response to activation by L1LE ligand. Thus, effective treatment of high-grade glioma may require simultaneous targeting of L1, FGFRs, and integrin receptors, which would reduce glioma cell motility as well as proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FGFR:

Fibroblast growth factor receptor

L1LE:

L1 long ectodomain

GBM:

Glioblastoma multiforme

FN:

Fibronectin-like repeats

CAMs:

Cell adhesion molecules

CHD:

CAM homology domains

References

  1. Neuropathol Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta 114(5):443–458

    Google Scholar 

  2. Kleihues P, Soylemezoglu F, Schauble B, Scheithauer BW, Burger PC (1995) Histopathology, classification, and grading of gliomas. Glia 15(3):211–221

    Article  PubMed  CAS  Google Scholar 

  3. Wen P, Fine HA, Black PM, Shrieve DC, Alexander E, Loeffler JS (1995) High-grade astrocytomas. Neurol Clin 13(4):875–900

    PubMed  CAS  Google Scholar 

  4. Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, Hjelmeland AB, Rich JN (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68(15):6043–6048

    Article  PubMed  CAS  Google Scholar 

  5. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  PubMed  CAS  Google Scholar 

  6. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23(58):9392–9400

    Article  PubMed  CAS  Google Scholar 

  7. Ahluwalia MS, de Groot J, Liu WM, Gladson CL (2010) Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. Cancer Lett 298(2):139–149

    Article  PubMed  CAS  Google Scholar 

  8. Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97(12):6242–6244

    Article  PubMed  CAS  Google Scholar 

  9. Faissner A, Teplow DB, Kubler D, Keilhauer G, Kinzel V, Schachner M (1985) Biosynthesis and membrane topography of the neural cell adhesion molecule L1. EMBO J 4(12):3105–3113

    PubMed  CAS  Google Scholar 

  10. Moos M, Tacke R, Scherner H, Teplow D, Gruth K, Schachner M (1988) Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334(6184):701–703

    Article  PubMed  CAS  Google Scholar 

  11. Schmid RS, Maness PF (2008) L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr Opin Neurobiol 18(3):245–250

    Article  PubMed  CAS  Google Scholar 

  12. Herron LR, Hill M, Davey F, Gunn-Moore FJ (2009) The intracellular interactions of the L1 family of cell adhesion molecules. Biochem J 419(3):3–519

    Article  Google Scholar 

  13. Riedle S, Kiefel H, Gast D, Bondong S, Wolterink S, Gutwein P, Altevogt P (2009) Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gammasecretase activity. Biochem J 420(3):391–402

    Article  PubMed  CAS  Google Scholar 

  14. Brummendorf T, Kenwrick S, Rathjen FG (1988) Neural cell recognition molecule L1; from cell biology to human hereditary brain malformation. Curr Opin Neurobiol 8(1):87–97

    Article  Google Scholar 

  15. Haspel J, Grumet M (2003) The L1CAM extracellular region: a multidomain protein with modular and cooperative binding modes. Front Biosci 8:s1210–s1225

    Article  PubMed  CAS  Google Scholar 

  16. Hortsch M (1996) The L1 family of neural cell adhesion molecules: old proteins performing new tricks. Neuron 17(4):587–593

    Article  PubMed  CAS  Google Scholar 

  17. Gavert N, Ben-Shmuel A, Raveh S, Ben-Ze’ev A (2008) L1-CAM in cancerous tissues. Expert Opin Biol Ther 8(11):1749–1757

    Article  PubMed  CAS  Google Scholar 

  18. Yang M, Li Y, Chilukuri K, Brady OA, Boulos MI, Kappes JC, Galileo DS (2011) L1 stimulation of human glioma cell motility correlates with FAK activation. J Neurooncol 105(1):27–44

    Article  PubMed  CAS  Google Scholar 

  19. Zecchini S, Bianchi M, Colombo N, Fasani R, Goisis G, Casadio C, Viale G, Liu J, Herlyn M, Godwin AK, Nuciforo PG, Cavallaro U (2008) The differential role of L1 in ovarian carcinoma and normal ovarian surface epithelium. Cancer Res 68(4):1110–1118

    Article  PubMed  CAS  Google Scholar 

  20. Li Y, Galileo DS (2010) Soluble L1CAM promotes breast cancer cell adhesion and migration in vitro, but not invasion. Cancer Cell Int 15(10):34

    Article  CAS  Google Scholar 

  21. Houssaint E, Blanquet PR, Champion-Arnaud R, Gesnel MC, Torriglia A, Courtois Y, Breathnach R (1990) Related fibroblast growth factor receptor genes exist in the human genome. Proc Natl Acad Sci USA 87(20):8180–8184

    Article  PubMed  CAS  Google Scholar 

  22. Johnson DE, Lu J, Chen H, Werner S, Williams LT (1991) The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Bio 11(9):4627–4634

    CAS  Google Scholar 

  23. Keegan K, Johnson DE, Williams LT, Hayman MJ (1991) Isolation of additional member of the fibroblast growth factor receptor family, FGFR-3. Proc Natl Acad Sci USA 88(4):1095–1099

    Article  PubMed  CAS  Google Scholar 

  24. Partanen J, Makela TP, Erola E, Kohonen J, Hirovenen H, Claesson-Welsh L, Alitalo K (1991) FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J 10(6):1347–1354

    PubMed  CAS  Google Scholar 

  25. McKeehan WL, Wang F, Kan M (1998) The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol 59:135–176

    Article  PubMed  CAS  Google Scholar 

  26. Doherty P, Walsh FS (1996) CAM-FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 8(2/3):99–111

    Article  CAS  Google Scholar 

  27. Doherty P, Williams E, Walsh FS (1995) A soluble chimeric form of the L1 glycoprotein stimulates neurite outgrowth. Neuron 14(1):57–66

    Article  PubMed  CAS  Google Scholar 

  28. Williams EJ, Furness J, Walsh FS, Doherty P (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13(3):583–594

    Article  PubMed  CAS  Google Scholar 

  29. Doherty P, Smith P, Walsh FS (1996) Shared cell adhesion molecule (CAM) homology domains point to CAMs signalling via FGF receptors. Perspect Dev Neurobiol 4(2–3):157–168

    PubMed  CAS  Google Scholar 

  30. Hall H, Walsh FS, Doherty P (1996) Review: a role for the FGF receptor in the axonal growth response stimulated by cell adhesion molecules? Cell Adhes Commun 3(6):441–450

    Article  PubMed  CAS  Google Scholar 

  31. Kulahin N, Li S, Kiselyov V, Bock E, Berezin V (2009) Identification of neural cell adhesion molecule L1-derived neuritigenic ligands of the fibroblast growth factor receptor. J Neurosci Res 87(8):1806–1812

    Article  PubMed  CAS  Google Scholar 

  32. Kulahin N, Li S, Hinsby A, Kiselyov V, Berezin V, Bock E (2008) Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor. Mol Cell Neurosci 37(3):528–536

    Article  PubMed  CAS  Google Scholar 

  33. Kiselyov VV, Skladchikova G, Hinsby AM, Jensen PH, Kulahin N, Soroka V, Pedersen N, Tsetlin V, Poulsen FM, Berezin V, Bock E (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11(6):691–701

    Article  PubMed  CAS  Google Scholar 

  34. Saffell JL, Williams EJ, Mason IJ, Walsh FS, Doherty P (1997) Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18(2):231–242

    Article  PubMed  CAS  Google Scholar 

  35. Rand V, Huang J, Stockwell T, Ferriera S, Buzko O, Levy S, Busam D, Li K, Edwards JB, Eberhart C, Murphy KM, Tsiamouri A, Beeson K, Simpson AJ, Venter JC, Riggins GJ, Strausberg RL (2005) Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc Natl Acad Sci USA 102(40):14344–14349

    Article  PubMed  CAS  Google Scholar 

  36. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Article  Google Scholar 

  37. Auguste P, Gürsel DB, Lemière S, Reimers D, Cuevas P, Carceller F, Di Santo JP, Bikfalvi A (2001) Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms. Cancer Res 61(4):1717–1726

    PubMed  CAS  Google Scholar 

  38. Rousseau B, Larrieu-Lahargue F, Javerzat S, Guilhem-Ducléon F, Beermann F, Bikfalvi A (2004) The tyrp1-Tag/tyrp1-FGFR1-DN bigenic mouse: a model for selective inhibition of tumor development, angiogenesis, and invasion into the neural tissue by blockade of fibroblast growth factor receptor activity. Cancer Res 64(7):2490–2495

    Article  PubMed  CAS  Google Scholar 

  39. Loilome W, Joshi AD, ap Rhys CM, Piccirillo S, Vescovi AL, Gallia GL, Riggins GJ (2009) Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. J Neurooncol 94(3):359–366

    Article  PubMed  CAS  Google Scholar 

  40. Morrison RS, Yamaguchi F, Bruner JM, Tang M, McKeehan W, Berger MS (1994) Fibroblast growth factor receptor gene expression and immunoreactivity are elevated in human glioblastoma multiforme. Cancer Res 54(10):2794–2799

    PubMed  CAS  Google Scholar 

  41. Yang M, Adla S, Temburni MK, Patel VP, Lagow EL, Brady OA, Tian J, Boulos MI, Galileo DS (2009) Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule. Cancer Cell Int 9:27

    Article  PubMed  Google Scholar 

  42. Stein GH (1979) T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol 99(1):43–54

    Article  PubMed  CAS  Google Scholar 

  43. Ponten J, Macintyre EH (1968) Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 74(4):465–486

    Article  PubMed  CAS  Google Scholar 

  44. Mohammadi M, Froum S, Hamby JM, Schroeder MC, Panek RL, Lu GH, Eliseenkova AV, Green D, Schlessinger J, Hubbard SR (1998) Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J 17(20):5896–5904

    Article  PubMed  CAS  Google Scholar 

  45. Bansal R, Magge S, Winkler S (2003) Specific inhibitor of FGF receptor signaling: FGF-2-mediated effects on proliferation, differentiation, and MAPK activation are inhibited by PD173074 in oligodendrocyte-lineage cells. J Neurosci Res 74(4):486–493

    Article  PubMed  CAS  Google Scholar 

  46. Pasquale EB, Singer SJ (1989) Identification of a developmentally regulated protein-tyrosine kinase by using anti-phosphotyrosine antibodies to screen a cDNA expression library. Proc Natl Acad Sci USA 86(14):5449–5453

    Article  PubMed  CAS  Google Scholar 

  47. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594

    Article  PubMed  CAS  Google Scholar 

  48. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7(8):2745–2752

    PubMed  CAS  Google Scholar 

  49. Fotos JS, Patel VP, Karin NJ, Temburni MK, Koh JT, Galileo DS (2006) Automated time-lapse microscopy and high-resolution tracking of cell migration. Cytotechnology 51:7–19

    Article  PubMed  Google Scholar 

  50. Ueno H, Gunn M, Dell K, Tseng A Jr, Williams L (1992) A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. J Biol Chem 267(3):1470–1476

    PubMed  CAS  Google Scholar 

  51. Suyama K, Shapiro I, Guttman M, Hazan RB (2002) A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2(4):301–314

    Article  PubMed  CAS  Google Scholar 

  52. Wang W, Zhu NL, Chua J, Swenson S, Costa FK, Schmitmeier S, Sosnowski BA, Shichinohe T, Kasahara N, Chen TC (2005) Retargeting of adenoviral vector using basic fibroblast growth factor ligand for malignant glioma gene therapy. J Neurosurg 103(6):1058–1066

    Article  PubMed  CAS  Google Scholar 

  53. Murphy PR, Knee RS (1995) Basic fibroblast growth factor binding and processing by human glioma cells. Mol Cell Endocrinol 114(1–2):193–203

    Article  PubMed  CAS  Google Scholar 

  54. Yamada SM, Yamaguchi F, Brown R, Berger MS, Morrison RS (1999) Suppression of glioblastoma cell growth following antisense oligonucleotide-mediated inhibition of fibroblast growth factor receptor expression. Glia 28(1):66–76

    Article  PubMed  CAS  Google Scholar 

  55. Walton NM, Sutter BM, Chen HX, Chang LJ, Roper SN, Scheffler B, Steindler DA (2006) Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 133(18):3671–3681

    Article  PubMed  CAS  Google Scholar 

  56. Morrison RS, Yamaguchi F, Saya H, Bruner JM, Yahanda AM, Donehower LA, Berger M (1994) Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neurooncol 18(3):207–216

    Article  PubMed  CAS  Google Scholar 

  57. Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology 25(2):85–101

    Article  PubMed  CAS  Google Scholar 

  58. Haglund K, Rusten TE, Stenmark H (2007) Aberrant receptor signaling and trafficking as mechanisms in oncogenesis. Crit Rev Oncog 13(1):39–74

    Article  PubMed  Google Scholar 

  59. Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437(2):199–213

    Article  PubMed  CAS  Google Scholar 

  60. Yan G, Fukabori Y, McBride G, Nikolaropolous S, McKeehan W (1993) Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF) FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol 13(8):4513–4522

    PubMed  CAS  Google Scholar 

  61. Zecchini S, Bombardelli L, Decio A, Bianchi M, Mazzarol G, Sanguineti F, Aletti G, Maddaluno L, Berezin V, Bock E, Casadio C, Viale G, Colombo N, Giavazzi R, Cavallaro U (2011) The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. EMBO Mol Med 3(8):480–494

    Article  PubMed  CAS  Google Scholar 

  62. Cretu A, Fotos JS, Little BW, Galileo DS (2005) Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model. Clin Exper Metastasis 22(3):225–236

    Article  Google Scholar 

  63. Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, Postina R, Fahrenholz F, Fogel M, Lemmon V, Altevogt P (2001) Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155(4):661–673

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Elena Pasquale at the Sanford Burnham Medical Research Institute for the cek-1 plasmid. This work was funded by grant Number 2 P20 RR016472 under the INBRE program of the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and by research resources of the Genetically Defined Microbe and Expression Core of the UAB Mucosal HIV and Immunobiology Center (R24 DK64400).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deni S. Galileo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (DOCX 2469 kb)

Supplementary material 3 (AVI 28.3 mb)

Supplementary material 3 (AVI 34 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanan, V., Temburni, M.K., Kappes, J.C. et al. L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor. Clin Exp Metastasis 30, 507–520 (2013). https://doi.org/10.1007/s10585-012-9555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9555-4

Keywords

Navigation