Skip to main content
Log in

miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

MicroRNAs are a class of ≈22-nt noncoding single-strand RNAs regulating gene expression postscriptionally. Metastasis caused poor prognosis in colorectal cancer patients and half of the patients developed metastatic lesions when admission. Here we investigated the possible roles of microRNAs in regulating metastasis in the paired colon cancer cells SW480 and SW620. Among those dysregulated microRNAs, miR-200c was speculated to inhibit metastasis by targeting ZEB1. Overexpression of miR-200c was concurrent with downregulation of ZEB1 mRNA and protein. Functional assays demonstrated that modulation of miR-200c with mimics or inhibitors changed potential of metastasis in SW480/620 cancer cells in vitro. Taken together, our study demonstrated that miR-200c inhibits metastatic ability by targeting ZEB1 in colon cancer cells SW480/620 and suggested that modulation of miR-200c could serve as therapeutic tool for inhibiting metastasis in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Figer A, Perez-Staub N, Carola E, Tourniqand C, Lledo G, Flesch M et al (2007) FOLFOX in patients aged between 76 and 80 years with metastatic colorectal cancer: an exploratory cohort of the OPTIMOX1 study. Cancer 110(12):2666–2671

    Article  PubMed  CAS  Google Scholar 

  2. Vermeulen SJ, Bruyneel EA, Bracke ME et al (1995) Transition from the noninvasive to the invasive phenotype and loss of α-catenin in human colon cancer cells. Cancer Res 55:4722–4728

    PubMed  CAS  Google Scholar 

  3. Ndozangue-Touriguine O, Sebbagh M, Merino D et al (2008) A mitochondrial block and expression of XIAP lead to resistance to TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma. Oncogene 27:6012–6022

    Article  PubMed  CAS  Google Scholar 

  4. Hewitt RE, McMarlin A, Kleiner D, Wersto R et al (2000) Validation of a model of colon cancer progression. J Pathol 192:446–454

    Article  PubMed  CAS  Google Scholar 

  5. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  PubMed  CAS  Google Scholar 

  6. Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila microRNA miR-14 suppressed cell death and is required for normal fat metabolism. Curr Biol 13:790–795

    Article  PubMed  CAS  Google Scholar 

  7. Brennecke J et al (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  PubMed  CAS  Google Scholar 

  8. Hatfield SD et al (2005) Stem cell division is regulated by the microRNA pathway. Nature 435:974–978

    Article  PubMed  CAS  Google Scholar 

  9. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  PubMed  CAS  Google Scholar 

  10. Bonci D, Coppola V, Musumeci M et al (2008) The miR-15 and miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14(11):1271–1277

    Article  PubMed  CAS  Google Scholar 

  11. Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association in shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  12. Toyota M, Suzuki H, Sasaki Y et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132

    Article  PubMed  CAS  Google Scholar 

  13. Costinean S, Zanesi N, Pekarsky Y et al (2006) Rre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR 155 transgenic mice. Proc Natl Acad Sci USA 103(18):7024–7029

    Article  PubMed  CAS  Google Scholar 

  14. Hayashita Y, Osada H, Tatematsu Y, Yamada H et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    Article  PubMed  CAS  Google Scholar 

  15. Nielsen BS, Jorgensen S et al (2011) High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis 28(1):27–28

    Article  PubMed  CAS  Google Scholar 

  16. Nicoloso MS, Spizzo R, Shimizu M et al (2009) MicroRNAs-the micro steering wheel of tumor metastases. Nat Rev Cancer 9:293–302

    Article  PubMed  CAS  Google Scholar 

  17. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumor invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  PubMed  CAS  Google Scholar 

  18. Huang Q, Gumireddy K, Schrier M et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210

    Article  PubMed  CAS  Google Scholar 

  19. Tavazoie SF, Alarcon C, Oskarsson T et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    Article  PubMed  CAS  Google Scholar 

  20. Chen C, Dana AR, Adam JB et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  Google Scholar 

  21. Available at. http://www.targetscan.org. Accessed 1 Sept 2011

  22. Ahmad A, Aboukameel A, Kong D et al (2011) Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res 17(9):3400–3409

    Google Scholar 

  23. Elson-Schwab I, Lorentzen A, Marshall CJ (2010) MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PLoS One 5(10):e13176

    Article  PubMed  Google Scholar 

  24. Yu J, Ohuchida K, Mizumoto K et al (2010) MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibit pancreatic cancer invasion but increases cell proliferation. Mol Cancer 28(9):169

    Article  Google Scholar 

  25. Asangani IA, Rasheed SAK, Nikolova DA et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

    Article  PubMed  CAS  Google Scholar 

  26. Gabriely G, Wurdinger T, Kesari S et al (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28(17):5369–5380

    Article  PubMed  CAS  Google Scholar 

  27. Huang H, Xie C, Sun X, Ritchie RP et al (2010) miR-10a contribute to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem 285(13):9383–9389

    Article  PubMed  CAS  Google Scholar 

  28. Zhang C, Wang C, Chen X et al (2010) Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem 56(12):1871–1879

    Article  PubMed  CAS  Google Scholar 

  29. Weiss FU, Marques IJ, Woltering JM et al (2009) Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137(6):2136–2145

    Article  PubMed  CAS  Google Scholar 

  30. Cheng H, Zhang L, Cogdell DE et al (2011) Circulating plasma miR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 6(3):e17745

    Article  PubMed  CAS  Google Scholar 

  31. Stratmann J, Wang CJ, Gnosa S et al (2011) Dicer and miRNA in relation to clinicopathological variables in colorectal cancer patients. BMC Cancer 11:345

    Article  PubMed  CAS  Google Scholar 

  32. Virens MR, Weng J, Suh I et al (2011) MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer. doi:10.1002/cncr.26587

  33. Mitomo S, Maesawa C, Ogasawara S et al (2008) Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 99(2):280–286

    Article  PubMed  CAS  Google Scholar 

  34. Dong P, Kaneuchi M, Watari H et al (2011) MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer 10:99

    Article  PubMed  CAS  Google Scholar 

  35. Song Y, Zhao F, Wang Z et al (2011) Inverse association between miR-194 expression and tumor invasion in gastric cancer. Ann Surg Oncol. doi:10.1245/s10434-011-1999-2

  36. Meng Z, Fu X, Chen X et al (2010) miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology 52(6):2148–2157

    Article  PubMed  CAS  Google Scholar 

  37. Kong KL, Kwong DL, Chan TH et al (2012) MicroRNA-375 inhibits tumor growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut 61(1):33–42

    Article  PubMed  CAS  Google Scholar 

  38. Wang F, Li Y, Zhou J et al (2011) miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol 179(5):2580–2588

    Article  PubMed  CAS  Google Scholar 

  39. Kim T, Veronese A, Pichiorri F et al (2011) p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 208(5):875–883

    Article  PubMed  CAS  Google Scholar 

  40. Shin KH, Bae SD, Hong HS et al (2011) miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras. Biochem Biophys Res Commun 404(4):896–902

    Article  PubMed  CAS  Google Scholar 

  41. Lwin T, Lin J, Choi YS et al (2010) Follicular dendritic cell-dependent drug resistance of non-Hodgkin lymphoma involves cell adhesion-mediated Bim down-regulation through induction of microRNA-181a. Blood 116(24):5228–5236

    Article  PubMed  CAS  Google Scholar 

  42. Shi L, Cheng Z, Zhang J et al (2008) hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193

    Article  PubMed  CAS  Google Scholar 

  43. Marchini S, Cavalieri D, Fruscio R et al (2011) Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumor tissue collections. Lancet Oncol 12(3):273–285

    Article  PubMed  CAS  Google Scholar 

  44. Ceppi P, Mudduluru G, Kumarswamy R et al (2010) Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res 8(9):1207–1216

    Article  PubMed  CAS  Google Scholar 

  45. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the microRNA has-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-Cadherin. Caner Res 67(17):7972–7976

    Article  CAS  Google Scholar 

  46. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–149144

    Article  PubMed  CAS  Google Scholar 

  47. Gregory PA, Bert AG, Paterson EL et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    Article  PubMed  CAS  Google Scholar 

  48. Krijger ID, Mekenkamp LJM, Punt CJA, Nagtegaal ID (2011) MicroRNAs in colorectal cancer metastasis. J Pathol 224:438–447

    Article  PubMed  Google Scholar 

  49. Thomson S, Petti F, Sujka-Kwok I et al (2011) A system view of epithelial-mesenchymal transition signaling states. Clin Exp Metastasis 28:137–155

    Article  PubMed  CAS  Google Scholar 

  50. Trimboli AJ, Fukino K, de Bruin A et al (2008) Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res 68:937–945

    Article  PubMed  CAS  Google Scholar 

  51. Gallo D, Ferlini C, Scambia G et al (2010) The epithelial–mesenchymal transition and the estrogen-signaling in ovarian cancer. Curr Drug Targets 11:474–481

    Article  PubMed  CAS  Google Scholar 

  52. Usami Y, Satake S, Nakayama F et al (2008) Snail-associated epithelial–mesenchymal transition promotes oesophageal squamous cell carcinoma motility and progression. J Pathol 215:330–339

    Article  PubMed  CAS  Google Scholar 

  53. Yimaz M, Chiristofori G, Lehembre F (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 12(13):535–541

    Article  Google Scholar 

  54. Joyce T, Cantarella D, Isella C, Medico E, Pintzas A (2009) A molecular signature for epithelial to mesenchymal transition in a human colon cancer cell system is revealed by large-scale microarray analysis. Clin Exp Metastasis 26(6):569–587

    Article  PubMed  CAS  Google Scholar 

  55. Park S-M, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    Article  PubMed  CAS  Google Scholar 

  56. Dave N, Guaita-Esteruelas S, Gutarra S et al (2011) Functional cooperation between Snail1 and Twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem 286(14):12024–12032

    Article  PubMed  CAS  Google Scholar 

  57. Peinado H, Olemda D, Snail CA (2007) Zeb and bHLH factors in tumor progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was granted by Guang Dong Science and Technology Planning funding (2008B060600007). No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian Ling Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M.L., Liang, L.S. & Wang, X.K. miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1. Clin Exp Metastasis 29, 457–469 (2012). https://doi.org/10.1007/s10585-012-9463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9463-7

Keywords

Navigation