Clinical & Experimental Metastasis

, Volume 28, Issue 8, pp 923–932 | Cite as

Carcinoembryonic antigen (CEA) and its receptor hnRNP M are mediators of metastasis and the inflammatory response in the liver

  • Peter Thomas
  • R. Armour Forse
  • Olga Bajenova


This article discusses the role of carcinoembryonic antigen (CEA) as a facilitator of the inflammatory response and its effect on colorectal cancer hepatic metastasis. Colorectal cancer accounts for 11% of all cancers in the United States and the majority of deaths are associated with liver metastasis. If left untreated, median survival is only six to 12 months. Resection of liver metastases offers the only chance for cure. Of the small number of patients who have operable cancer most will have further tumor recurrence. The molecular mechanisms associated with colorectal cancer metastasis to the liver are largely unknown. However CEA production has been shown both clinically and experimentally to be a factor in an increased metastatic potential of colorectal cancers to the liver. CEA also has a role in protecting tumor cells from the effects of anoikis and this affords a selective advantage for tumor cell survival in the circulation. CEA acts in the liver through its interaction with its receptor (CEAR), a protein that is related to the hnRNP M family of RNA binding proteins. In the liver CEA binds with hnRNP M on Kupffer cells and causes activation and production of pro- and anti-inflammatory cytokines including IL-1, IL-10, IL-6 and TNF-α. These cytokines affect the up-regulation of adhesion molecules on the hepatic sinusoidal endothelium and protect the tumor cells against cytotoxicity by nitric oxide (NO) and other reactive oxygen radicals. HnRNP M signaling in Kupffer cells appears to be controlled by beta-adrenergic receptor activation. The cells will respond to the β-adrenergic receptor agonist terbutaline resulting in reduced TNF-α and increased IL-10 and IL-6 production following CEA activation. This has implications for the control of tumor cell implantation and survival in the liver.


Carcinoembryonic antigen hnRNP M Metastasis Inflammation Epithelial mesenchymal transition Cytokines Adhesion molecules 


  1. 1.
    Siegel R, Ward E, Brawley O et al (2009) Cancer statistics, 2011. CA Cancer J Clin 61:212–236CrossRefGoogle Scholar
  2. 2.
    Zak Y, Moore HG, Ghosh BC (2007) Patterns of recurrence of colorectal cancer. J Surg Oncol 97:1–2CrossRefGoogle Scholar
  3. 3.
    Millikan KW, Staren ED, Doolas A (1997) Invasive therapy of metastatic colorectal cancer to the liver. Surg Clin North Am 77:27–28PubMedCrossRefGoogle Scholar
  4. 4.
    Bird NC, Mangnall D, Majeed AW (2006) Biology of colorectal liver metastases: a review. J Surg Oncol 94:68–80PubMedCrossRefGoogle Scholar
  5. 5.
    Fusai G, Davidson BR (2003) Management of colorectal liver metastases. Colorectal Dis 5:2–23PubMedCrossRefGoogle Scholar
  6. 6.
    Topal B, Aerts JL, Roskams T et al (2005) Cancer cell dissemination during curative surgery for colorectal liver metastases. Eur J Surg Onc 31:506–511CrossRefGoogle Scholar
  7. 7.
    Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion and metastasis. Cell 124:263–266PubMedCrossRefGoogle Scholar
  8. 8.
    Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612PubMedCrossRefGoogle Scholar
  9. 9.
    Dittmar T, Heyder C, Gloria-Maercker E et al (2008) Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ specific manner. Clin Exp Metastasis 25:11–32PubMedCrossRefGoogle Scholar
  10. 10.
    Eccles SA (2005) Targeting key steps in metastatic tumor progression. Curr Opin Genet Dev 15:77–86PubMedCrossRefGoogle Scholar
  11. 11.
    Wang W, Goswami S, Dahai E et al (2005) Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol 15:138–145PubMedCrossRefGoogle Scholar
  12. 12.
    Thompson E, Newgreen DF (2005) Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 65:5991–5995PubMedCrossRefGoogle Scholar
  13. 13.
    Tse JC, Kalluri R (2007) Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101:816–829CrossRefGoogle Scholar
  14. 14.
    Yang J, Mani SA, Weinberg RA (2006) Exploring a new twist on tumor metastasis. Cancer Res 66:4549–4552PubMedCrossRefGoogle Scholar
  15. 15.
    Ludwig T (2005) Local proteolytic activity in tumor cell invasion and metastasis. BioEssays 27:1181–1191PubMedCrossRefGoogle Scholar
  16. 16.
    Tarin D (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65:5996–6001PubMedCrossRefGoogle Scholar
  17. 17.
    Christensen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326CrossRefGoogle Scholar
  18. 18.
    Hugo H, Ackland ML, Buck T et al (2007) Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383PubMedCrossRefGoogle Scholar
  19. 19.
    Kim S, Takahashi H, Lin WW (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106PubMedCrossRefGoogle Scholar
  20. 20.
    Wagner HE, Toth CA, Steele GD et al (1992) Invasive and metastatic potential of human colorectal cancer cell lines: relationship to cellular differentiation and carcinoembryonic antigen production. Clin Exp Metastasis 10:25–31PubMedCrossRefGoogle Scholar
  21. 21.
    Paget S (1889) The distribution of secondary growth in cancer of the breast. Lancet 1:571–573Google Scholar
  22. 22.
    Macarthur M, Hold GL, El-Omar GM (2004) Inflammation and cancer. II. Role of chronic inflammation and cytokine polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol 286:G515–G520Google Scholar
  23. 23.
    Ellerman JE, Brown CK, de Vera M et al (2007) Masquerader: high mobility box-1 and cancer. Clin Cancer Res 13:2836–2848PubMedCrossRefGoogle Scholar
  24. 24.
    Gebhart C, Nemeth J, Angel P et al (2006) S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 72:1622–1631CrossRefGoogle Scholar
  25. 25.
    Nicolson GL (1988) Cancer metastasis: tumor cell and host organ properties important to metastasis to specific secondary sites. Biochim Biophys Acta 948:175–224PubMedGoogle Scholar
  26. 26.
    Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188PubMedCrossRefGoogle Scholar
  27. 27.
    West NP, Dattani M, McShane P et al (2010) The proportion of tumor cells is an independent predictor for survival in colorectal cancer patients. Br J Cancer 102:1519–1523PubMedCrossRefGoogle Scholar
  28. 28.
    Solakoglu O, Maierhofer C, Lahr G et al (2002) Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc Natl Acad Sci USA 99:2246–2251PubMedCrossRefGoogle Scholar
  29. 29.
    Hess KR, Varadhachary GR, Taylor SH (2006) Metastatic patterns in adenocarcinoma. Cancer 106:1624–1633PubMedCrossRefGoogle Scholar
  30. 30.
    Lindmann F, Schlimok G, Dirschedl P et al (1992) Prognostic significance of micrometastatic tumor cells in bone marrow of colorectal cancer patients. Lancet 340:685–689CrossRefGoogle Scholar
  31. 31.
    Bonneheim DC, Petrelli NJ, Herrera L et al (1986) Osseous metastases from colorectal carcinoma. Am J Surg 151:457–459CrossRefGoogle Scholar
  32. 32.
    Talbot RW, Irvine B, Dowd GS, Northover JM (1989) Bone metastases in carcinoma of the rectum: a clinical and pathological review. Eur J Surg Oncol 15:449–452PubMedGoogle Scholar
  33. 33.
    Lin EY, Nguyen AV, Russell RG (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–739PubMedCrossRefGoogle Scholar
  34. 34.
    Sunderkotter C, Goebeler M, Schulze-Osthoff K et al (1990) Macrophage derived angiogenesis factors. Pharmacol Ther 51:195–216CrossRefGoogle Scholar
  35. 35.
    Lewis CE, Leek R, Harris A et al (1995) Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. J Leukoc Biol 57:747–781PubMedGoogle Scholar
  36. 36.
    Toth CA (1992) Carcinoembryonic antigen binding proteins on elicited peritoneal macrophages. J Leukoc Biol 51:466–471PubMedGoogle Scholar
  37. 37.
    Galon J, Fridman WH, Pages F (2007) The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 67:1883–1886PubMedCrossRefGoogle Scholar
  38. 38.
    Gold P, Freedman SO (1965) Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122:467–481PubMedCrossRefGoogle Scholar
  39. 39.
    Hammarström S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9:67–81PubMedCrossRefGoogle Scholar
  40. 40.
    Beauchemin N, Draber P, Dveksler G et al (1999) Redefined nomenclature for members of the carcinoembryonic antigen gene family. Exp Cell Res 252:243–249PubMedCrossRefGoogle Scholar
  41. 41.
    Thomas P, Toth CA, Saini KS et al (1990) The structure, metabolism and function of the carcinoembryonic antigen gene family. Biochim Biophys Acta 1032:177–189PubMedGoogle Scholar
  42. 42.
    Thompson JA, Grunert F, Zimmermann W (1991) Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J Clin Lab Anal 5:344–366PubMedCrossRefGoogle Scholar
  43. 43.
    Schrewe H, Thompson J, Bona M et al (1990) Cloning of the complete gene for carcinoembryonic antigen: analysis of its promoter indicates a region conveying cell type-specific expression. Mol Cell Biol 10:2738–2748PubMedGoogle Scholar
  44. 44.
    Jessup JM, Thomas P (1998) CEA and metastasis: a facilitator of site specific metastasis. In: Stanners C (ed) Cell adhesion and communication mediated by the CEA family: basic and clinical perspectives. Harwood Academic Publishers, Amsterdam, Netherlands, pp 195–222Google Scholar
  45. 45.
    Irvine T, Scott M, Clark CI (2007) A small raise in CEA is sensitive for recurrence after surgery for colorectal cancer. Colorectal Dis 9:527–531PubMedCrossRefGoogle Scholar
  46. 46.
    Stout RL, Fulks M, Dolan VF et al (2007) Increased mortality associated with elevated carcinoembryonic antigen in insurance applicants. J Insur Med 39:251–258PubMedGoogle Scholar
  47. 47.
    Kelly KJ, Wong J, Gladdy R et al (2009) Prognostic impact of RT-PCR based detection of peritoneal micro metastases in patients with pancreatic cancer undergoing curative resection. Ann Surg Oncol 16:3333–3339PubMedCrossRefGoogle Scholar
  48. 48.
    Maraqa L, Cummings M, Peter MB et al (2008) Carcinoembryonic antigen cell adhesion molecule 6 predicts breast cancer recurrence following adjuvant tamoxifen. Clin Cancer Res 14:405–411PubMedCrossRefGoogle Scholar
  49. 49.
    Jantscheff P, Terraciano L, Lowy A et al (2003) Expression of CEACAM6 in resectable colorectal cancer: a factor of independent prognostic significance. J Clin Oncol 21:3638–3646PubMedCrossRefGoogle Scholar
  50. 50.
    Goldstein MJ, Mitchell EP (2005) Carcinoembryonic antigen in the staging and follow up of patients with colorectal cancer. Cancer Invest 23:338–351PubMedGoogle Scholar
  51. 51.
    Koppe MJ, Bleichrodt RP, Oyen WJG (2005) Radioimmunotherapy and colorectal cancer. Br J Surg 92:264–276PubMedCrossRefGoogle Scholar
  52. 52.
    Ilantzis C, DeMarte L, Screaton RA et al (2002) Deregulated expression of the human tumor marker CEA and CEA family member CEACAM6 disrupts tissue architecture and blocks colonocyte differentiation. Neoplasia 4:151–163PubMedCrossRefGoogle Scholar
  53. 53.
    Ilantzis C, Jothy S, Alpert LC et al (1997) Cell surface levels of human carcinoembryonic antigen are inversely correlated with colonocyte differentiation in colon carcinogenesis. Lab Invest 76:703–716PubMedGoogle Scholar
  54. 54.
    Leusch HG, Drzeniek Z, Hefta SA (1991) The putative role of members of the CEA-gene family (CEA, NCA an BGP) as ligands for the bacterial colonization of different human epithelial tissues. Zentralbl Bakteriol 275:118–122PubMedGoogle Scholar
  55. 55.
    Leusch HG, Hefta SA, Drzeniek Z et al (1990) Escherichia coli of human origin binds to carcinoembryonic antigen (CEA) and non-specific cross reacting antigen (NCA). FEBS Lett 261:405–409PubMedCrossRefGoogle Scholar
  56. 56.
    Virji M, Watt SM, Barker S et al (1996) The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitides and Neisseria gonorrhea. Mol Microbiol 22:929–939PubMedCrossRefGoogle Scholar
  57. 57.
    Dveksler GS, Dieffenbach CW, Cardellichio CB (1993) Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J Virol 67:1–8PubMedGoogle Scholar
  58. 58.
    Tan K, Zelus BD, Meijers R, Liu JH (2002) Crystal structure of murine sCEACAM1a[1, 4]: a coronavirus receptor in the CEA family. EMBO J 21:2076–2086PubMedCrossRefGoogle Scholar
  59. 59.
    Thomas P, Zamcheck N (1983) The role of the liver in the clearance and excretion of circulating carcinoembryonic antigen (CEA). Dig Dis Sci 28:216–224PubMedCrossRefGoogle Scholar
  60. 60.
    O’Brien MJ, Bronstein B, Zamcheck N et al (1980) Cholestasis and hepatic metastases: a factor contributing to very high plasma carcinoembryonic antigen (CEA) elevations. J Natl Cancer Inst 64:1291–1294PubMedGoogle Scholar
  61. 61.
    Paschos KA, Majeed AW, Bird NC (2010) Role of Kupffer cells in the outgrowth of colorectal cancer liver metastases. Hepatol Res 40:83–94PubMedCrossRefGoogle Scholar
  62. 62.
    Bajenova OV, Zimmer R, Stolper E et al (2001) HnRNP M4 is a receptor for carcinoembryonic antigen in Kupffer cells. J Biol Chem 276:31067–31073PubMedCrossRefGoogle Scholar
  63. 63.
    Bajenova O, Stolper E, Gapon S et al (2003) Surface expression of HnRNP M4 nuclear protein on Kupffer cells relates to its function as a carcinoembryonic antigen receptor. Exp Cell Res 292:282–291Google Scholar
  64. 64.
    Datar KV, Dreyfus G, Swanson MS (1993) The human HNRNP M proteins: identification of a methionine arginine rich repeat motif in ribonucleoproteins. Nucleic Acids Res 21:439–446PubMedCrossRefGoogle Scholar
  65. 65.
    Blanck I, Perrin C, Mziaut H (1994) Molecular-cloning, cDNA analysis, and localization of a monomer of the N-acetylglucosamine-specific receptor of the thyroid, NAGR1, to chromosome 19p13.3–13.2. Genomics 21:18–26PubMedCrossRefGoogle Scholar
  66. 66.
    Blanck I, Perrin C, Mziaut H (1995) Erratum. Genomics 27:561PubMedCrossRefGoogle Scholar
  67. 67.
    Gangopadhyay A, Thomas P (1996) Processing of carcinoembryonic antigen by Kupffer cells: recognition of a penta-peptide sequence. Arch Biochem Biophys 334:151–157PubMedCrossRefGoogle Scholar
  68. 68.
    Tosi M, Duponchel C, Meo T et al (1987) Complete cDNA sequence of human complement Cls and close physical linkage of the homologous genes Cls and Clr. Biochemistry 26:8516–8524PubMedCrossRefGoogle Scholar
  69. 69.
    Zimmer R, Thomas P (2001) Mutations in the carcinoembryonic antigen gene in colorectal cancer patients: implications on liver metastasis. Cancer Res 61:2822–2826PubMedGoogle Scholar
  70. 70.
    Ordonez C, Screaton RA, Ilantizis C (2000) Human carcinoembryonic antigen functions as a general inhibitor of anoikis. Cancer Res 60:3419–3424PubMedGoogle Scholar
  71. 71.
    Soeth E, Wirth T, List HJ et al (2001) Controlled ribozyme targeting demonstrates an anti-apoptotic effect of carcinoembryonic antigen in HT-29 colon cancer cells. Clin Cancer Res 7:2022–2030PubMedGoogle Scholar
  72. 72.
    Laguinge L, Bajenova O, Bowden E et al (2005) Nuclear protein hn RNP M4 interacts with CEA and might mediate signal transduction activity of CEA in HT29 colon cancer cells. Anticancer Res 25:23–32PubMedGoogle Scholar
  73. 73.
    Samara RN, Laguinge LM, Jessup JM (2007) Carcinoembryonic antigen inhibits anoikis in colorectal carcinoma cells by interfering with TRAIL-R2 (DR5) signaling. Cancer Res 67:4774–4782PubMedCrossRefGoogle Scholar
  74. 74.
    Kim JH, Hahm B, Kim YK (2000) Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J Mol Biol 298:395–405PubMedCrossRefGoogle Scholar
  75. 75.
    Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205PubMedCrossRefGoogle Scholar
  76. 76.
    Venables JP, Koh C-S, Froehlich U et al (2008) Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol Cell Biol 28:6033–6043PubMedCrossRefGoogle Scholar
  77. 77.
    Carpenter B, MacKay C, Alnabulsi A et al (2005) The roles of heterogeneous nuclear ribonucleoproteins in tumor development and progression. Biochim Biophys Acta 1765:85–100PubMedGoogle Scholar
  78. 78.
    Khotin M, Turoverova L, Aksenova V et al (2010) Proteomic analysis of ACTN-4interacting proteins reveals its putative involvement in mRNA metabolism. Biochem Biophys Res Commun 395:192–196CrossRefGoogle Scholar
  79. 79.
    Thomas P, Ivanov G, Adejuyigbe O et al (2007) A unique Kupffer cell receptor system: Involvement in colorectal cancer metastasis to the liver. In: Proceedings of the 7th world congress on trauma, shock, inflammation and sepsis. Monduzzi Editore international proceedings, pp 157–161Google Scholar
  80. 80.
    Schumann D, Chen CJ, Kaplan B, Shively JE (2001) Carcinoembryonic antigen cell adhesion molecule 1 directly associates with cytoskeletal proteins actin and tropomyosin. J Biol Chem 276:47421–47433PubMedCrossRefGoogle Scholar
  81. 81.
    Guil S, Caceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14:491–596CrossRefGoogle Scholar
  82. 82.
    Hovhannisyan RH, Carstens RP (2007) Heterogenous ribonucleoprotein M is a splicing regulatory protein that can enhance or silence splicing of alternatively spliced exons. J Biol Chem 282:36265–36274PubMedCrossRefGoogle Scholar
  83. 83.
    Dery KJ, Gaur S, Gencheva M et al (2011) Mechanistic control of carcinoembryonic antigen related cell adhesion molecule-1 (CEACAM-1) splice isoforms by the heterogeneous nuclear ribonuclear proteins hnRNP L, hnRNP A1 and hnRNP M. J Biol Chem 285:16039–16051CrossRefGoogle Scholar
  84. 84.
    Han SP, Tang YH, Smith R (2010) Functional diversity of the hnRNPs: past present and perspectives. Biochem J 430:379–392PubMedCrossRefGoogle Scholar
  85. 85.
    Ganguly A, Yeltsin E, Robbins J (2003) Identification of a carcinoembryonic antigen binding protein on monocytes. Biochem Biophys Res Commun 311:319–323PubMedCrossRefGoogle Scholar
  86. 86.
    Hernandez A, Smith F, Wang Q (2000) Assessment of differential gene expression patterns in human colon cancers. Ann Surg 232:576–585PubMedCrossRefGoogle Scholar
  87. 87.
    Zimmer R, Thomas P (2002) Expression profiling and interferon-beta (INF-B) regulation of metastasis in colorectal cancer cells. Clin Exp Metastasis 19:541–550PubMedCrossRefGoogle Scholar
  88. 88.
    Bertucci F, Salas S, Eyesteries S et al (2004) Gene expression profiling of colon cancer by DNA microarrays and correlation with histochemical parameters. Oncogene 23:1377–1391PubMedCrossRefGoogle Scholar
  89. 89.
    Oue N, Hamai Y, Mitani Y (2004) Gene expression profile of gastric carcinoma: identification of genes and tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of gene expression. Cancer Res 64:2397–2405PubMedCrossRefGoogle Scholar
  90. 90.
    Saha S, Bardelli A, Buckhaults P et al (2001) A phosphatase associated with metastasis of colorectal cancer. Science 294:1343–1346PubMedCrossRefGoogle Scholar
  91. 91.
    Tibbetts LM, Doremus CM, Tzanakakis GN et al (1993) Liver metastases with 10 human colon carcinoma cell lines in nude mice and association with carcinoembryonic antigen production. Cancer 71:315–321PubMedCrossRefGoogle Scholar
  92. 92.
    Hostetter RB, Augustus LB, Mankarious R et al (1990) Carcinoembryonic antigen as a selective enhancer of colorectal cancer metastases. J Natl Cancer Inst 82:380–385PubMedCrossRefGoogle Scholar
  93. 93.
    Thomas P, Gangopadhyay A, Steele G et al (1995) The effect of transfection of the CEA gene on the metastatic behavior of the human colorectal cancer cell line MIP-101. Cancer Lett 92:59–66PubMedCrossRefGoogle Scholar
  94. 94.
    Hashino J, Fukada Y, Oikawa S et al (1994) Metastatic potential on human colorectal carcinoma SW1222 cells transfected with cDNA encoding carcinoembryonic antigen. Clin Exp Metastasis 12:324–328PubMedCrossRefGoogle Scholar
  95. 95.
    Jessup JM, Petrick AT, Toth CA et al (1993) Carcinoembryonic antigen: enhancement of liver colonization through retention of human colorectal carcinoma cells. Br J Cancer 67:464–470PubMedCrossRefGoogle Scholar
  96. 96.
    Langley RR, Fidler IJ (2007) Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocrine Rev 28:297–321CrossRefGoogle Scholar
  97. 97.
    Kobayashi H, Boelte KC et al (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14:377–386PubMedCrossRefGoogle Scholar
  98. 98.
    Gangopadhyay A, Bajenova O, Kelly TM et al (1996) Carcinoembryonic antigen induces cytokine expression in Kupffer cells; implications for hepatic metastasis from colon cancer. Cancer Res 56:4805–4810PubMedGoogle Scholar
  99. 99.
    Minami S, Furui J, Kanematsu T (2001) Role of carcinoembryonic antigen in the progression of colon cancer cells that express carbohydrate antigen. Cancer Res 61:2732–2735PubMedGoogle Scholar
  100. 100.
    Edmiston K, Gangopadhyay A, Shoji Y et al (1997) In vivo induction of murine cytokine production by carcinoembryonic antigen. Cancer Res 57:4432–4436PubMedGoogle Scholar
  101. 101.
    Tobi M, Kim M, Zimmer R et al (2011) A model of inhibition of liver metastasis: The cotton top tamarin (Saguinus Oedipus). Dig Dis Sci 56:397–405PubMedCrossRefGoogle Scholar
  102. 102.
    Thomas P, Hayashi H, Zimmer R et al (2004) Regulation of cytokine production in carcinoembryonic antigen stimulated Kupffer cells by β2-adrenergic receptors. Cancer Lett 209:251–257PubMedCrossRefGoogle Scholar
  103. 103.
    Miska M, Wu RQ, Zhou M et al (2005) Sympathetic endotoxicity in sepsis: pro-inflammatory priming of macrophages by norepinephrine. Front Biosci 10:2217–2229CrossRefGoogle Scholar
  104. 104.
    Subervile S, Bellocq A, Foqueray B et al (1996) Regulation of IL-10 production by beta-adrenergic agonists. Eur J Immunol 26:2601–2605CrossRefGoogle Scholar
  105. 105.
    Izeboud CA, Mocking JAJ, Monshouwer M (1999) Participation of beta-adrenergic receptors on macrophages in modulation of LPS induced cytokine release. J Recep Sig Trans Res 19:191–202CrossRefGoogle Scholar
  106. 106.
    Brenner S, Prosch S, Schenke-Layland K et al (2003) cAMP induced interleukin-10 promoter activation depends on CCAAT/enhancer binding protein expression and monocytic differentiation. J Biol Chem 278:5597–5604PubMedCrossRefGoogle Scholar
  107. 107.
    Platzer C, Meisel C, Vogt K (1995) Up-regulation of monocytic IL-10 by tumor necrosis factor alpha and cAMP elevating drugs. Int Immunol 7:517–523PubMedCrossRefGoogle Scholar
  108. 108.
    Strassmann G, Patilkota V, Fikelman F (1994) Evidence for the involvement of interleukin-10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. J Exp Med 180:2365–2370PubMedCrossRefGoogle Scholar
  109. 109.
    Blaxall BC, Pellett AC, Wu SC et al (2000) Purification and characterization of beta-adrenergic receptor mRNA binding proteins. J Biol Chem 275:4290–4297PubMedCrossRefGoogle Scholar
  110. 110.
    Gangopadhyay A, Lazure DA, Thomas P (1998) Adhesion of colorectal carcinoma cells to the endothelium is mediated by cytokines from CEA stimulated Kupffer cells. Clin Exp Metastasis 16:703–712PubMedCrossRefGoogle Scholar
  111. 111.
    Yamamoto N, Sakai F, Yamakazi H et al (1997) FR167653 a dual inhibitor of interleukin-1 and tumor necrosis factor-α ameliorates endotoxin-induced shock. Eur J Pharmacol 327:169–175PubMedCrossRefGoogle Scholar
  112. 112.
    Khatib AM, Auguste P, Fallavollita L et al (2005) Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol 167:749–759PubMedCrossRefGoogle Scholar
  113. 113.
    Khatib AM, Fallavollita L, Wancewicz EV et al (2002) Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res 62:5393–5398PubMedGoogle Scholar
  114. 114.
    Jessup JM, Battle P, Waller H (1999) Reactive nitrogen and oxygen radicals formed during hepatic ischemia-reperfusion kill weakly metastatic colorectal cancer cells. Cancer Res 59:1825–1829PubMedGoogle Scholar
  115. 115.
    Jessup JM, Samara R, Battle P et al (2004) Carcinoembryonic antigen promotes tumor cell survival in liver through an IL-10-dependent pathway. Clin Exp Metastasis 21:709–717PubMedCrossRefGoogle Scholar
  116. 116.
    Jessup JM, Laguinge L, Lin S et al (2004) Carcinoembryonic antigen induction of IL-10 and IL-6 inhibits hepatic ischemic/reperfusion injury to colorectal carcinoma cells. Int J Cancer 111:332–337PubMedCrossRefGoogle Scholar
  117. 117.
    Kokkonen N, Ulibarri IF, Kaupilla A et al (2007) Hypoxia upregulates carcinoembryonic antigen expression in cancer cells. Int J Cancer 121:2443–2450PubMedCrossRefGoogle Scholar
  118. 118.
    Ashizawa T, Okada R, Suzuki Y et al (2006) Study of interleukin-6 in the spread of colorectal cancer: the diagnostic significance of IL-6. Acta Med Okayama 60:325–330PubMedGoogle Scholar
  119. 119.
    Siragusa T, Miller AR, Belluco C et al (2000) The role of circulating cytokines in colorectal carcinoma. Int J Clin Oncol 5:217–228CrossRefGoogle Scholar
  120. 120.
    Nakagoe T, Tsuji T, Sawai K et al (2003) The relationship between circulating interleukin-6 and carcinoembryonic antigen in patients with colorectal cancer. Anticancer Res 23:3561–3567PubMedGoogle Scholar
  121. 121.
    Ashizawa T, Aoki T, Sumi T et al (2002) The study of hepatocytes growth factor in the spreading of colorectal cancer: the clinical role of HGF in Dukes’ classification. Jpn J Gastroenterol Surg 35:480–486Google Scholar
  122. 122.
    Talmadge JE, Fidler IJ (2010) The biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669PubMedCrossRefGoogle Scholar
  123. 123.
    Li Y, Hong C, Zhongxian J et al (2010) Carcinoembryonic antigen interacts with TGF-β Receptor and inhibits TGF-β signaling in colorectal cancers. Cancer Res 70:8159–8168PubMedCrossRefGoogle Scholar
  124. 124.
    Huh JW, Oh BR, Kim HR, Kim YJ (2010) Preoperative carcinoembryonic antigen level as an independent prognostic factor in potentially curative colon cancer. J Surg Oncol 101:396–400PubMedGoogle Scholar
  125. 125.
    Ballin M, Pelina MD, Farina AR et al (1992) Thorgeirsson UP effect of phorbol ester and cytokines on matrix metalloproteinase and tissue inhibitor of metalloproteinase expression in tumor and normal-cell lines. Invasion Metastasis 12:168–184PubMedGoogle Scholar
  126. 126.
    Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of SurgeryCreighton UniversityOmahaUSA

Personalised recommendations