Clinical & Experimental Metastasis

, Volume 28, Issue 8, pp 851–863 | Cite as

Reactive oxygen species-mediated PKC and integrin signaling promotes tumor progression of human hepatoma HepG2

  • Chi-Tan Hu
  • Jia-Ru Wu
  • Chuan-Chu Cheng
  • Sindy Wang
  • Hsiao-Ting Wang
  • Ming-Che Lee
  • Ling-Jung Wang
  • Siou-Mei Pan
  • Tsu-Yao Chang
  • Wen-Sheng Wu
Research paper


The poor prognosis and recurrence of HCC are majorly caused by intrahepatic metastasis. Delineating the molecular pathways mediating these processes may benefit developing effective targeting therapies. Using human hepatoma HepG2 as a model, we have found reactive oxygen species (ROS) may cooperate with protein kinase C (PKC) for sustained ERK phosphorylation and migration of HepG2 induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We further investigated whether integrin signaling is involved. Various antagonists of integrin signaling prevented TPA-induced activation of ERK and PKC, ROS generation and migration of HepG2. On the other hand, TPA-induced phosphorylation of integrin signaling components including focal adhesion kinase (FAK), Src (Tyr416) and paxillin (Tyr31 and Ser178) can be prevented by PKC inhibitor Bisindolylmaleimides (BIS) and antioxidant dithiotheritol (DTT). HepG2 overexpressing PKCα contained elevated phosphorylated paxillin. Also, ROS generator phenazine methosulfate and tert-Butyl hydroperoxide may induce phosphorylation of paxillin and activation of PKC. Taken together, ROS mediated cross talk of PKC and integrin for migration of HepG2 induced by TPA. Furthermore, TPA induced intrahepatic metastasis of HepG2 in SCID mice, which was prevented by BIS or (BIS plus DTT). Elevated phosphorylation of paxillin was observed in tumor of mice treated with TPA as compared with those co-treated with TPA/BIS. In summary, the signal pathways for tumor progression of hepatoma induced by TPA can be established both in vitro and in vivo.


ROS PKC Integrin Paxillin ERK Migration Intrahepatic metastasis 



Tetradecanoyl phorbol acetate


Protein kinase C


Reactive oxygen species


Focal adhesion kinase


Extracellular signal-regulated kinases






Tert-butyl hydroperoxide


Phenazine methosulfate


Hepatocellular carcinoma


Intrahepatic metastasis


Hepatocyte growth factor



We thank National Science Council in Taiwan and Research Centre of Hepatology in Buddhist Tzu Chi General Hospital for financial support.

Supplementary material

10585_2011_9416_MOESM1_ESM.doc (79 kb)
Supplementary material 1 (DOC 79 kb)
10585_2011_9416_MOESM2_ESM.doc (255 kb)
Supplementary material 2 (DOC 255 kb)
10585_2011_9416_MOESM3_ESM.doc (188 kb)
Supplementary material 3 (DOC 187 kb)
10585_2011_9416_MOESM4_ESM.doc (2.8 mb)
Supplementary material 4 (DOC 2863 kb)
10585_2011_9416_MOESM5_ESM.doc (98 kb)
Supplementary material 5 (DOC 98 kb)
10585_2011_9416_MOESM6_ESM.doc (401 kb)
Supplementary material 6 (DOC 401 kb)
10585_2011_9416_MOESM7_ESM.doc (8.5 mb)
Supplementary material 7 (DOC 8711 kb)
10585_2011_9416_MOESM8_ESM.doc (706 kb)
Supplementary material 8 (DOC 706 kb)
10585_2011_9416_MOESM9_ESM.doc (164 kb)
Supplementary material 9 (DOC 164 kb)


  1. 1.
    Ercolani G, Grazi GL, Ravaioli M et al (2003) Liver resection for hepatocellular carcinoma on cirrhosis: univariate and multivariate analysis of risk factors for intrahepatic recurrence. Ann Surg 237:536–543PubMedGoogle Scholar
  2. 2.
    Kumada T, Nakano S, Takeda I et al (1997) Patterns of recurrence after initial treatment in patients with small hepatocellular carcinoma. Hepatology 25:87–92PubMedCrossRefGoogle Scholar
  3. 3.
    Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379PubMedCrossRefGoogle Scholar
  4. 4.
    Joshi A, Cao D (2010) TGF-beta signaling, tumor microenvironment and tumor progression: the butterfly effect. Front Biosci 15:180–194PubMedCrossRefGoogle Scholar
  5. 5.
    Yu J, Ustach C, Kim HR (2003) Platelet-derived growth factor signaling and human cancer. J Biochem Mole Biol 36:49–59CrossRefGoogle Scholar
  6. 6.
    Lu X, Kang Y (2010) Epidermal growth factor signalling and bone metastasis. Br J Cancer 102:457–461PubMedCrossRefGoogle Scholar
  7. 7.
    Zhou HY, Pon YL, Wong AS (2008) HGF/MET signaling in ovarian cancer. Curr Mole Med 8:469–480CrossRefGoogle Scholar
  8. 8.
    Yang JD, Nakamura I, Roberts LR (2011) The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol 21:35–43PubMedCrossRefGoogle Scholar
  9. 9.
    O’Hayre M, Salanga CL, Handel TM et al (2008) Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J 409:635–649PubMedCrossRefGoogle Scholar
  10. 10.
    Wagner EF, Nebreda AR (2009) Signal integration by jnk and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549PubMedCrossRefGoogle Scholar
  11. 11.
    Katz M, Amit I, Yarden Y (2007) Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta 1773:1161–1176PubMedCrossRefGoogle Scholar
  12. 12.
    Reddy KB, Nabha SM, Atanaskova N (2003) Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev 22:395–403PubMedCrossRefGoogle Scholar
  13. 13.
    Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117:4619–4628PubMedCrossRefGoogle Scholar
  14. 14.
    Viala E, Pouyssegur J (2004) Regulation of tumor cell motility by ERK mitogen-activated protein kinases. Ann N Y Acad Sci 1030:208–218PubMedCrossRefGoogle Scholar
  15. 15.
    Guo K, Liu Y, Zhou H et al (2008) Involvement of protein kinase C beta-extracellular signal-regulating kinase 1/2/p38 mitogen-activated protein kinase-heat shock protein 27 activation in hepatocellular carcinoma cell motility and invasion. Cancer Sci 99:486–496PubMedCrossRefGoogle Scholar
  16. 16.
    Hsieh YH, Wu TT, Huang CY et al (2007) P38 mitogen-activated protein kinase pathway is involved in protein kinase calpha-regulated invasion in human hepatocellular carcinoma cells. Cancer Res 67:4320–4327PubMedCrossRefGoogle Scholar
  17. 17.
    Lee HC, Tian B, Sedivy JM et al (2006) Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology 131:1208–1217PubMedCrossRefGoogle Scholar
  18. 18.
    Ito Y, Sasaki Y, Horimoto M et al (1998) Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27:951–958PubMedCrossRefGoogle Scholar
  19. 19.
    Tian YC, Chen YC, Chang CT et al (2007) Epidermal growth factor and transforming growth factor-beta1 enhance hk-2 cell migration through a synergistic increase of matrix metalloproteinase and sustained activation of ERK signaling pathway. Exp Cell Res 313:2367–2377PubMedCrossRefGoogle Scholar
  20. 20.
    Wu WS, Tsai RK, Chang CH et al (2006) Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell HepG2. Mol Cancer Res 4:747–758PubMedCrossRefGoogle Scholar
  21. 21.
    Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032PubMedCrossRefGoogle Scholar
  22. 22.
    Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100PubMedCrossRefGoogle Scholar
  23. 23.
    Miyamoto S, Teramoto H, Gutkind JS et al (1996) Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAPK kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135:1633–1642PubMedCrossRefGoogle Scholar
  24. 24.
    Wu WS, Wu JR, Hu CT (2008) Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev 27:303–314PubMedCrossRefGoogle Scholar
  25. 25.
    Giles GI (2006) The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des 12:4427–4443PubMedCrossRefGoogle Scholar
  26. 26.
    Torres M (2003) Mitogen-activated protein kinase pathways in redox signaling. Front Biosci 8:d369–d391PubMedCrossRefGoogle Scholar
  27. 27.
    Wu WS (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25:695–705PubMedCrossRefGoogle Scholar
  28. 28.
    Ferraro D, Corso S, Fasano E et al (2006) Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 25:3689–3698PubMedCrossRefGoogle Scholar
  29. 29.
    Nimnual AS, Taylor LJ, Bar-Sagi D (2003) Redox-dependent downregulation of Rho by Rac. Nat Cell Biol 5:236–241PubMedCrossRefGoogle Scholar
  30. 30.
    Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5:47–62PubMedCrossRefGoogle Scholar
  31. 31.
    Gomez DE, Skilton G, Alonso DF et al (1999) The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis. Oncol Rep 6:1363–1370PubMedGoogle Scholar
  32. 32.
    Gopalakrishna R, Jaken S (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28:1349–1361PubMedCrossRefGoogle Scholar
  33. 33.
    Frey RS, Gao X, Javaid K et al (2006) Phosphatidylinositol 3-kinase gamma signaling through protein kinase Czeta induces NADPH oxidase-mediated oxidant generation and NF-kappaB activation in endothelial cells. J Biol Chem 281:16128–16138PubMedCrossRefGoogle Scholar
  34. 34.
    Talior I, Tennenbaum T, Kuroki T et al (2005) PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am J Physiol 288:E405–E411Google Scholar
  35. 35.
    Lee HB, Yu MR, Yang Y et al (2003) Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14:S241–S245PubMedCrossRefGoogle Scholar
  36. 36.
    Soh JW, Lee EH, Prywes R (1999) Novel roles of specific isoforms of protein kinase C in activation of the c-fos serum response element. Mol Cell Biol 19:1313–1324PubMedGoogle Scholar
  37. 37.
    Setsukinai K, Urano Y, Kakinuma K et al (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175PubMedCrossRefGoogle Scholar
  38. 38.
    Takamura M, Sakamoto M, Genda T (2001) Inhibition of intrahepatic metastasis of human hepatocellular carcinoma by Rho-associated protein kinase inhibitor Y-27632. Hepatology 33:577–581PubMedCrossRefGoogle Scholar
  39. 39.
    Imanishi Y, Hu B, Jarzynka MJ et al (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67(9):4254–4263PubMedCrossRefGoogle Scholar
  40. 40.
    Bjorge JD, Jakymiw A, Fujita DJ (2000) Selected glimpses into the activation and function of Src kinase. Oncogene 19:5620–5635PubMedCrossRefGoogle Scholar
  41. 41.
    Brown MC, Turner CE (2004) Paxillin: adapting to change. Physiol Rev 84:1315–1339PubMedCrossRefGoogle Scholar
  42. 42.
    Barker SL, LaRocca PJ (1994) Method of production and control of a commercial tissue culture surface. J Tissue Cult Method 16:151–153CrossRefGoogle Scholar
  43. 43.
    Dumont JA, Bitonti AJ (1994) Modulation of human melanoma cell metastasis and adhesion may involve integrin phosphorylation mediated through protein kinase C. Biochem Biophys Res Commun 204:264–272PubMedCrossRefGoogle Scholar
  44. 44.
    Stawowy P, Margeta C, Blaschke F et al (2005) Protein kinase C epsilon mediates angiotensin II-induced activation of beta1-integrins in cardiac fibroblasts. Cardiovasc Res 67:50–59PubMedCrossRefGoogle Scholar
  45. 45.
    Castagna M, Takai Y, Kaibuchi K (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–7851PubMedGoogle Scholar
  46. 46.
    Ron D, Kazanietz MG (1999) New insights into the regulation of protein kinase C and novel phorbol ester receptors. Faseb J 13:1658–1676PubMedGoogle Scholar
  47. 47.
    Kermorgant S, Parker PJ (2005) c-Met signalling: spatio-temporal decisions. Cell Cycle 4:352–355PubMedCrossRefGoogle Scholar
  48. 48.
    Worden B, Yang XP, Lee TL et al (2005) Hepatocyte growth factor/scatter factor differentially regulates expression of proangiogenic factors through Egr-1 in head and neck squamous cell carcinoma. Cancer Res 65:7071–7080PubMedCrossRefGoogle Scholar
  49. 49.
    Hashigasako A, Machide M, Nakamura T et al (2004) Bi-directional regulation of Ser-985 phosphorylation of c-met via protein kinase C and protein phosphatase 2A involves c-Met activation and cellular responsiveness to hepatocyte growth factor. J Biol Chem 279:26445–26452PubMedCrossRefGoogle Scholar
  50. 50.
    Newman MJ (1993) Transforming growth factor beta and the cell surface in tumor progression. Cancer Metastasis Rev 12:239–254PubMedCrossRefGoogle Scholar
  51. 51.
    Putnam AJ, Schulz VV, Freiter EM et al (2009) Src, PKCalpha, and PKCdelta are required for alphavbeta3 integrin-mediated metastatic melanoma invasion. Cell Commun Signal 7:10PubMedCrossRefGoogle Scholar
  52. 52.
    Wu TT, Hsieh YH, Hsieh YS (2008) Reduction of PKC alpha decreases cell proliferation, migration, and invasion of human malignant hepatocellular carcinoma. J Cell Biochem 103:9–20PubMedCrossRefGoogle Scholar
  53. 53.
    Wu TT, Hsieh YH, Wu CC et al (2007) Overexpression of protein kinase C alpha mRNA in human hepatocellular carcinoma: a potential marker of disease prognosis. Clin Chim Acta Int J Clin Chem 382:54–58CrossRefGoogle Scholar
  54. 54.
    Rucci N, DiGiacinto C, Orru L et al (2005) A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. J Cell Sci 118:3263–3275PubMedCrossRefGoogle Scholar
  55. 55.
    Ozaki M, Ogita H, Takai Y (2007) Involvement of integrin-induced activation of protein kinase C in the formation of adherens junctions. Genes Cell 12:651–662CrossRefGoogle Scholar
  56. 56.
    Rigot V, Lehmann M, Andre F et al (1998) Integrin ligation and PKC activation are required for migration of colon carcinoma cells. J Cell Sci 111(Pt 20):3119–3127PubMedGoogle Scholar
  57. 57.
    Svineng G, Ravuri C, Rikardsen O et al (2008) The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function. Connect Tissue Res 49:197–202PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Chi-Tan Hu
    • 1
  • Jia-Ru Wu
    • 2
  • Chuan-Chu Cheng
    • 2
  • Sindy Wang
    • 2
  • Hsiao-Ting Wang
    • 2
  • Ming-Che Lee
    • 1
  • Ling-Jung Wang
    • 2
  • Siou-Mei Pan
    • 1
  • Tsu-Yao Chang
    • 2
  • Wen-Sheng Wu
    • 2
  1. 1.Research Centre for Hepatology, Department of Internal MedicineBuddhist Tzu Chi General Hospital and Tzu Chi UniversityHualeinTaiwan
  2. 2.Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi UniversityHualeinTaiwan

Personalised recommendations