Skip to main content

Advertisement

Log in

Tissue factor expression in ovarian cancer: implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

We evaluated the expression of tissue factor (TF) in ovarian cancer (EOC) and the potential of hI-con1, an antibody-like molecule targeting TF, as a novel form of therapy against chemotherapy-resistant ovarian disease. We studied the expression of TF in 88 EOC by immunohistochemistry (IHC) and real-time-PCR (qRT-PCR) and the levels of membrane-bound-complement-regulatory-proteins CD46, CD55 and CD59 in primary EOC cell lines by flow-cytometry. Sensitivity to hI-con1-dependent-cell-mediated-cytotoxicity (IDCC), complement-dependent-cell-cytotoxicity and inhibition of IDCC by γ-immunoglobulin were evaluated in 5-h 51chromium-release-assays. Cytoplasmic and/or membrane TF expression was observed in 24 out of 25 (96%) of the EOC samples tested by IHC, but not in normal ovarian-tissue. EOC with clear cell histology significantly overexpress TF when compared to serous, endometrioid, or undifferentiated tumors by qRT-PCR. With a single exception, all primary EOC that overexpressed TF demonstrated high levels of CD46, CD55 and CD59 and regardless of their histology or resistance to chemotherapy, were highly sensitive to IDCC. The effect of complement and physiologic doses of γ-immunoglobulin on IDCC in ovarian cancer cell lines overexpressing TF was tumor specific and related to the overexpression of CD59 on tumor cells. Small-interfering-RNA-mediated knockdown of CD59 expression in ovarian tumors significantly increased hI-con1-mediated cytotoxic activity in vitro. Finally, low doses of interleukin-2 further increased the cytotoxic effect induced by hI-con1 (P < 0.01). hI-con1 molecule induces strong cytotoxicity against primary chemotherapy-resistant ovarian cancer cell lines overexpressing TF and may represent a novel therapeutic agent for the treatment of ovarian tumors refractory to standard treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TF:

Tissue factor

fVII:

Factor VII

hI-con1:

Human immuno-conjugate molecule

IDCC:

hI-con1-dependent cell-mediated cytotoxicity

FBS:

Fetal bovine serum

IHC:

Immunohistochemistry

mAb:

Monoclonal antibody

NK cells:

Natural killer cells

PBL:

Peripheral blood lymphocytes

qRT-PCR:

Quantitative real-time-polymerase chain reaction

CC:

Clear cell carcinoma

OSPC:

Ovarian serous papillary carcinoma

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Cho KR, Shih I (2009) Ovarian cancer. Annu Rev Pathol 4:287–313

    Article  PubMed  CAS  Google Scholar 

  3. Bamberger ES, Perrett CW (2002) Angiogenesis in epithelian ovarian cancer. Mol Pathol 55:348–359

    Article  PubMed  CAS  Google Scholar 

  4. Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:947–970

    Google Scholar 

  5. Contrino J, Hair G, Kreutzer DL, Rickles FR (1996) In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med 2:209–215

    Article  PubMed  CAS  Google Scholar 

  6. Abe K, Shoji M, Chen J, Bierhaus A, Danave I, Micko C, Casper K, Dillehay DL, Nawroth PP, Rickles FR (1999) Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci USA 96:8663–8668

    Article  PubMed  CAS  Google Scholar 

  7. Hollingsworth HC, Steinberg SM, Silverberg SG, Merino MJ (1996) Advanced stage transitional cell carcinoma of the ovary. Hum Pathol 27:1267–1272

    Article  PubMed  CAS  Google Scholar 

  8. Ruf W (2007) Tissue factor and PAR signaling in tumor progression. Thromb Res 120:S7–S12

    Article  PubMed  Google Scholar 

  9. Hu Z, Sun Y, Garen A (1999) Targeting tumor vasculature endothelial cells and tumor cells for immunotherapy of human melanoma in a mouse xenograft model. Proc Natl Acad Sci USA 96:8161–8166

    Article  PubMed  CAS  Google Scholar 

  10. Hu Z, Garen A (2000) Intratumoral injection of adenoviral vectors encoding tumor-targeted immunoconjugates for cancer immunotherapy. Proc Natl Acad Sci USA 97:9221–9225

    Article  PubMed  CAS  Google Scholar 

  11. Hu Z, Garen A (2001) Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer. Proc Natl Acad Sci USA 98:12180–12185

    Article  PubMed  CAS  Google Scholar 

  12. Waxman E, Ross JB, Laue TM, Guha A, Thiruvikraman SV, Lin TC, Konigsberg WH, Nemerson Y (1992) Tissue factor and its extracellular soluble domain: the relationship between intermolecular association with factor VIIa and enzymatic activity of the complex. Biochemistry 31:3998–4003

    Article  PubMed  CAS  Google Scholar 

  13. Presta L, Sims P, Meng YG, Moran P, Bullens S, Bunting S, Schoenfeld J, Lowe D, Lai J, Rancatore P, Iverson M, Lim A, Chisholm V, Kelley RF, Riederer M, Kirchhofer D (2001) Generation of a humanized, high affinity anti-tissue factor antibody for use as a novel antithrombotic therapeutic. Thromb Haemost 85:379–389

    PubMed  CAS  Google Scholar 

  14. Dickinson CD, Kelly CR, Ruf W (1996) Identification of surface residues mediating tissue factor binding and catalytic function of the serine protease factor VIIa. Proc Natl Acad Sci USA 93:14379–14384

    Article  PubMed  CAS  Google Scholar 

  15. Gelderman KA, Tomlinson S, Ross GD, Gorter A (2004) Complement function in mAb-mediated cancer immunotherapy. Trends Immunol 25(3):158–164

    Article  PubMed  CAS  Google Scholar 

  16. Richter CE, Cocco E, Bellone S, Silasi DA, Ruttinger D, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD (2010) High-grade, chemotherapy-resistant ovarian carcinomas overexpress epithelial cell adhesion molecule (EpCAM) and are highly sensitive to immunotherapy with MT201, a fully human monoclonal anti-EpCAM antibody. Am J Obstet Gynecol 203:582.e1–582.e7

    Article  CAS  Google Scholar 

  17. Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, Baeuerle PA, Prang NS (2006) High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol 43:1183–1193

    Article  PubMed  CAS  Google Scholar 

  18. Kaushal V, Mukunyadzi P, Siegel ER, Dennis RA, Johnson DE, Kohli M (2008) Expression of tissue factor in prostate cancer correlates with malignant phenotype. Appl Immunohistochem Mol Morphol 16:1–6

    PubMed  CAS  Google Scholar 

  19. Santin AD, Hermonat PL, Ravaggi A, Chiriva-Internati M, Zhan D, Pecorelli S, Parham GP, Cannon MJ (1999) Induction of human papillomavirus-specific CD4(+) and CD8(+) lymphocytes by E7-pulsed autologous dendritic cells in patients with human papillomavirus type 16- and 18-positive cervical cancer. J Virol 73:5402–5410

    PubMed  CAS  Google Scholar 

  20. O’Brien ME, Schofield JB, Tan S, Fryatt I, Fisher C, Wiltshaw E (1993) Clear cell epithelial ovarian cancer (mesonephroid): bad prognosis only in early stages. Gynecol Oncol 49:250–254

    Article  PubMed  Google Scholar 

  21. Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, Suzuki M, Sato I, Taguchi K (2000) Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer 88:2584–2589

    Article  PubMed  CAS  Google Scholar 

  22. Itamochi H, Kigawa J, Sugiyama T, Kikuchi Y, Suzuki M, Terakawa N (2002) Low proliferation activity may be associated with chemoresistance in clear cell carcinoma of the ovary. Obstet Gynecol 100:281–287

    Article  PubMed  Google Scholar 

  23. Alessi P, Ebbinghaus C, Neri D (2004) Molecular targeting of angiogenesis. Biochim Biophys Acta 1654:39–49

    PubMed  CAS  Google Scholar 

  24. Satoh T, Oki A, Uno K, Sakurai M, Ochi H, Okada S, Minami R, Matsumoto K, Tanaka YO, Tsunoda H, Homma S, Yoshikawa H (2007) High incidence of silent venous thromboembolism before treatment in ovarian cancer. Br J Cancer 97:1053–1057

    Article  PubMed  CAS  Google Scholar 

  25. Uno K, Homma S, Satoh T, Nakanishi K, Abe D, Matsumoto K, Oki A, Tsunoda H, Yamaguchi I, Nagasawa T, Yoshikawa H, Aonuma K (2007) Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer. Br J Cancer 96:290–295

    Article  PubMed  CAS  Google Scholar 

  26. Koizume S, Jin MS, Miyagi E, Hirahara F, Nakamura Y, Piao JH, Asai A, Yoshida A, Tsuchiya E, Ruf W, Miyagi Y (2006) Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Res 66:9453–9460

    Article  PubMed  CAS  Google Scholar 

  27. Fang J, Wei WN, Xia LH, Song SJ (2004) The effects of tissue factor/activated factor VII complex on the invasion and metastasis of human ovarian cancer. Chung Hua Hsueh Yeh Hsueh Tsa Chi 25:523–527

    CAS  Google Scholar 

  28. Han LY, Landen CN Jr, Kamat AA, Lopez A, Bender DP, Mueller P, Schmandt R, Gershenson DM, Sood AK (2006) Preoperative serum tissue factor levels are an independent prognostic factor in patients with ovarian carcinoma. J Clin Oncol 24:755–761

    Article  PubMed  CAS  Google Scholar 

  29. Mueller BM, Reisfeld RA, Edgington TS, Ruf W (1992) Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA 89:11832–11836

    Article  PubMed  CAS  Google Scholar 

  30. Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI, Coomber BL, Mackman N, Rak JW (2005) Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105:1734–1741

    Article  PubMed  CAS  Google Scholar 

  31. Cocco E, Hu Z, Richter CE, Bellone S, Casagrande F, Bellone M, Todeschini P, Krikun G, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Buza N, Pecorelli S, Lockwood CJ, Santin AD (2010) hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor for immunotherapy of uterine serous papillary carcinoma. Br J Cancer 103:812–819

    Article  PubMed  CAS  Google Scholar 

  32. Brodbeck WG, Mold C, Atkinson JP, Medof ME (2000) Cooperation between decay-accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack. J Immunol 165:3999–4006

    PubMed  CAS  Google Scholar 

  33. Shi XX, Zhang B, Zang JL, Wang GY, Gao MH (2009) CD59 silencing via retrovirus-mediated RNA interference enhanced complement-mediated cell damage in ovary cancer. Cell Mol Immunol 6:61–66

    Article  PubMed  CAS  Google Scholar 

  34. Ortaldo JR, Woodhouse C, Morgan AC, Herberman RB, Cheresh DA, Reisfeld R (1987) Analysis of effector cells in human antibody-dependent cellular cytotoxicity with murine monoclonal antibodies. J Immunol 138:3566–3572

    PubMed  CAS  Google Scholar 

  35. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446

    Article  PubMed  CAS  Google Scholar 

  36. Fehniger TA, Bluman EM, Porter MM, Mrózek E, Cooper MA, Van Deusen JB, Frankel SR, Stock W, Caligiuri MA (2000) Potential mechanisms of human natural killer cell expansion in vivo during low-dose IL-2 therapy. J Clin Invest 106:117–124

    Article  PubMed  CAS  Google Scholar 

  37. Caron PC, Lai LT, Scheinberg DA (1995) Interleukin-2 enhancement of cytotoxicity by humanized monoclonal antibody M195 (anti-CD33) in myelogenous leukemia. Clin Cancer Res 1:63–70

    PubMed  CAS  Google Scholar 

  38. Krikun G, Hu Z, Osteen K, Bruner-Tran KL, Schatz F, Taylor HS, Toti P, Arcuri F, Konigsberg W, Garen A, Booth CJ, Lockwood CJ (2010) The immunoconjugate “icon” targets aberrantly expressed endothelial tissue factor causing regression of endometriosis. Am J Pathol 176:1050–1056

    Article  PubMed  CAS  Google Scholar 

  39. Tezel TH, Bodek E, Sonmez K, Kaliappan S, Kaplan HJ, Hu Z, Garen A (2007) Targeting tissue factor for immunotherapy of choroidal neovascularization by intravitreal delivery of factor VII-Fc chimeric antibody. Ocular Immunol Inflamm 15:3–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by grants from NIH R01 CA122728-01A2 to AS, and grants 501/A3/3 and 0027557 from the Italian Institute of Health (ISS) to AS. This investigation was also supported by NIH Research Grant CA-16359 from the National Cancer Institute. The Authors thank Dr. William Konigsberg, Dr. Alan Garen and Dr. Zhiwei Hu for initiating the collaboration with CJL on Icon immunotherapy of human gynecologic malignancies and Iconic Therapeutics Inc. for providing hI-con1 protein free of charge for our studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro D. Santin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cocco, E., Varughese, J., Buza, N. et al. Tissue factor expression in ovarian cancer: implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor. Clin Exp Metastasis 28, 689–700 (2011). https://doi.org/10.1007/s10585-011-9401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9401-0

Keywords

Navigation