Clinical & Experimental Metastasis

, Volume 28, Issue 7, pp 689–700 | Cite as

Tissue factor expression in ovarian cancer: implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor

  • Emiliano Cocco
  • Joyce Varughese
  • Natalia Buza
  • Stefania Bellone
  • Ken-Yu Lin
  • Marta Bellone
  • Paola Todeschini
  • Dan-Arin Silasi
  • Masoud Azodi
  • Peter E. Schwartz
  • Thomas J. Rutherford
  • Luisa Carrara
  • Renata Tassi
  • Sergio Pecorelli
  • Charles J. Lockwood
  • Alessandro D. Santin
Research Paper


We evaluated the expression of tissue factor (TF) in ovarian cancer (EOC) and the potential of hI-con1, an antibody-like molecule targeting TF, as a novel form of therapy against chemotherapy-resistant ovarian disease. We studied the expression of TF in 88 EOC by immunohistochemistry (IHC) and real-time-PCR (qRT-PCR) and the levels of membrane-bound-complement-regulatory-proteins CD46, CD55 and CD59 in primary EOC cell lines by flow-cytometry. Sensitivity to hI-con1-dependent-cell-mediated-cytotoxicity (IDCC), complement-dependent-cell-cytotoxicity and inhibition of IDCC by γ-immunoglobulin were evaluated in 5-h 51chromium-release-assays. Cytoplasmic and/or membrane TF expression was observed in 24 out of 25 (96%) of the EOC samples tested by IHC, but not in normal ovarian-tissue. EOC with clear cell histology significantly overexpress TF when compared to serous, endometrioid, or undifferentiated tumors by qRT-PCR. With a single exception, all primary EOC that overexpressed TF demonstrated high levels of CD46, CD55 and CD59 and regardless of their histology or resistance to chemotherapy, were highly sensitive to IDCC. The effect of complement and physiologic doses of γ-immunoglobulin on IDCC in ovarian cancer cell lines overexpressing TF was tumor specific and related to the overexpression of CD59 on tumor cells. Small-interfering-RNA-mediated knockdown of CD59 expression in ovarian tumors significantly increased hI-con1-mediated cytotoxic activity in vitro. Finally, low doses of interleukin-2 further increased the cytotoxic effect induced by hI-con1 (P < 0.01). hI-con1 molecule induces strong cytotoxicity against primary chemotherapy-resistant ovarian cancer cell lines overexpressing TF and may represent a novel therapeutic agent for the treatment of ovarian tumors refractory to standard treatment modalities.


Cancer Factor VII Immunotherapy Ovarian carcinoma Tissue factor 



Tissue factor


Factor VII


Human immuno-conjugate molecule


hI-con1-dependent cell-mediated cytotoxicity


Fetal bovine serum




Monoclonal antibody

NK cells

Natural killer cells


Peripheral blood lymphocytes


Quantitative real-time-polymerase chain reaction


Clear cell carcinoma


Ovarian serous papillary carcinoma



Supported in part by grants from NIH R01 CA122728-01A2 to AS, and grants 501/A3/3 and 0027557 from the Italian Institute of Health (ISS) to AS. This investigation was also supported by NIH Research Grant CA-16359 from the National Cancer Institute. The Authors thank Dr. William Konigsberg, Dr. Alan Garen and Dr. Zhiwei Hu for initiating the collaboration with CJL on Icon immunotherapy of human gynecologic malignancies and Iconic Therapeutics Inc. for providing hI-con1 protein free of charge for our studies.


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300PubMedCrossRefGoogle Scholar
  2. 2.
    Cho KR, Shih I (2009) Ovarian cancer. Annu Rev Pathol 4:287–313PubMedCrossRefGoogle Scholar
  3. 3.
    Bamberger ES, Perrett CW (2002) Angiogenesis in epithelian ovarian cancer. Mol Pathol 55:348–359PubMedCrossRefGoogle Scholar
  4. 4.
    Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:947–970Google Scholar
  5. 5.
    Contrino J, Hair G, Kreutzer DL, Rickles FR (1996) In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med 2:209–215PubMedCrossRefGoogle Scholar
  6. 6.
    Abe K, Shoji M, Chen J, Bierhaus A, Danave I, Micko C, Casper K, Dillehay DL, Nawroth PP, Rickles FR (1999) Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci USA 96:8663–8668PubMedCrossRefGoogle Scholar
  7. 7.
    Hollingsworth HC, Steinberg SM, Silverberg SG, Merino MJ (1996) Advanced stage transitional cell carcinoma of the ovary. Hum Pathol 27:1267–1272PubMedCrossRefGoogle Scholar
  8. 8.
    Ruf W (2007) Tissue factor and PAR signaling in tumor progression. Thromb Res 120:S7–S12PubMedCrossRefGoogle Scholar
  9. 9.
    Hu Z, Sun Y, Garen A (1999) Targeting tumor vasculature endothelial cells and tumor cells for immunotherapy of human melanoma in a mouse xenograft model. Proc Natl Acad Sci USA 96:8161–8166PubMedCrossRefGoogle Scholar
  10. 10.
    Hu Z, Garen A (2000) Intratumoral injection of adenoviral vectors encoding tumor-targeted immunoconjugates for cancer immunotherapy. Proc Natl Acad Sci USA 97:9221–9225PubMedCrossRefGoogle Scholar
  11. 11.
    Hu Z, Garen A (2001) Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer. Proc Natl Acad Sci USA 98:12180–12185PubMedCrossRefGoogle Scholar
  12. 12.
    Waxman E, Ross JB, Laue TM, Guha A, Thiruvikraman SV, Lin TC, Konigsberg WH, Nemerson Y (1992) Tissue factor and its extracellular soluble domain: the relationship between intermolecular association with factor VIIa and enzymatic activity of the complex. Biochemistry 31:3998–4003PubMedCrossRefGoogle Scholar
  13. 13.
    Presta L, Sims P, Meng YG, Moran P, Bullens S, Bunting S, Schoenfeld J, Lowe D, Lai J, Rancatore P, Iverson M, Lim A, Chisholm V, Kelley RF, Riederer M, Kirchhofer D (2001) Generation of a humanized, high affinity anti-tissue factor antibody for use as a novel antithrombotic therapeutic. Thromb Haemost 85:379–389PubMedGoogle Scholar
  14. 14.
    Dickinson CD, Kelly CR, Ruf W (1996) Identification of surface residues mediating tissue factor binding and catalytic function of the serine protease factor VIIa. Proc Natl Acad Sci USA 93:14379–14384PubMedCrossRefGoogle Scholar
  15. 15.
    Gelderman KA, Tomlinson S, Ross GD, Gorter A (2004) Complement function in mAb-mediated cancer immunotherapy. Trends Immunol 25(3):158–164PubMedCrossRefGoogle Scholar
  16. 16.
    Richter CE, Cocco E, Bellone S, Silasi DA, Ruttinger D, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD (2010) High-grade, chemotherapy-resistant ovarian carcinomas overexpress epithelial cell adhesion molecule (EpCAM) and are highly sensitive to immunotherapy with MT201, a fully human monoclonal anti-EpCAM antibody. Am J Obstet Gynecol 203:582.e1–582.e7CrossRefGoogle Scholar
  17. 17.
    Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, Baeuerle PA, Prang NS (2006) High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol 43:1183–1193PubMedCrossRefGoogle Scholar
  18. 18.
    Kaushal V, Mukunyadzi P, Siegel ER, Dennis RA, Johnson DE, Kohli M (2008) Expression of tissue factor in prostate cancer correlates with malignant phenotype. Appl Immunohistochem Mol Morphol 16:1–6PubMedGoogle Scholar
  19. 19.
    Santin AD, Hermonat PL, Ravaggi A, Chiriva-Internati M, Zhan D, Pecorelli S, Parham GP, Cannon MJ (1999) Induction of human papillomavirus-specific CD4(+) and CD8(+) lymphocytes by E7-pulsed autologous dendritic cells in patients with human papillomavirus type 16- and 18-positive cervical cancer. J Virol 73:5402–5410PubMedGoogle Scholar
  20. 20.
    O’Brien ME, Schofield JB, Tan S, Fryatt I, Fisher C, Wiltshaw E (1993) Clear cell epithelial ovarian cancer (mesonephroid): bad prognosis only in early stages. Gynecol Oncol 49:250–254PubMedCrossRefGoogle Scholar
  21. 21.
    Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, Suzuki M, Sato I, Taguchi K (2000) Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer 88:2584–2589PubMedCrossRefGoogle Scholar
  22. 22.
    Itamochi H, Kigawa J, Sugiyama T, Kikuchi Y, Suzuki M, Terakawa N (2002) Low proliferation activity may be associated with chemoresistance in clear cell carcinoma of the ovary. Obstet Gynecol 100:281–287PubMedCrossRefGoogle Scholar
  23. 23.
    Alessi P, Ebbinghaus C, Neri D (2004) Molecular targeting of angiogenesis. Biochim Biophys Acta 1654:39–49PubMedGoogle Scholar
  24. 24.
    Satoh T, Oki A, Uno K, Sakurai M, Ochi H, Okada S, Minami R, Matsumoto K, Tanaka YO, Tsunoda H, Homma S, Yoshikawa H (2007) High incidence of silent venous thromboembolism before treatment in ovarian cancer. Br J Cancer 97:1053–1057PubMedCrossRefGoogle Scholar
  25. 25.
    Uno K, Homma S, Satoh T, Nakanishi K, Abe D, Matsumoto K, Oki A, Tsunoda H, Yamaguchi I, Nagasawa T, Yoshikawa H, Aonuma K (2007) Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer. Br J Cancer 96:290–295PubMedCrossRefGoogle Scholar
  26. 26.
    Koizume S, Jin MS, Miyagi E, Hirahara F, Nakamura Y, Piao JH, Asai A, Yoshida A, Tsuchiya E, Ruf W, Miyagi Y (2006) Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Res 66:9453–9460PubMedCrossRefGoogle Scholar
  27. 27.
    Fang J, Wei WN, Xia LH, Song SJ (2004) The effects of tissue factor/activated factor VII complex on the invasion and metastasis of human ovarian cancer. Chung Hua Hsueh Yeh Hsueh Tsa Chi 25:523–527Google Scholar
  28. 28.
    Han LY, Landen CN Jr, Kamat AA, Lopez A, Bender DP, Mueller P, Schmandt R, Gershenson DM, Sood AK (2006) Preoperative serum tissue factor levels are an independent prognostic factor in patients with ovarian carcinoma. J Clin Oncol 24:755–761PubMedCrossRefGoogle Scholar
  29. 29.
    Mueller BM, Reisfeld RA, Edgington TS, Ruf W (1992) Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA 89:11832–11836PubMedCrossRefGoogle Scholar
  30. 30.
    Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI, Coomber BL, Mackman N, Rak JW (2005) Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105:1734–1741PubMedCrossRefGoogle Scholar
  31. 31.
    Cocco E, Hu Z, Richter CE, Bellone S, Casagrande F, Bellone M, Todeschini P, Krikun G, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Buza N, Pecorelli S, Lockwood CJ, Santin AD (2010) hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor for immunotherapy of uterine serous papillary carcinoma. Br J Cancer 103:812–819PubMedCrossRefGoogle Scholar
  32. 32.
    Brodbeck WG, Mold C, Atkinson JP, Medof ME (2000) Cooperation between decay-accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack. J Immunol 165:3999–4006PubMedGoogle Scholar
  33. 33.
    Shi XX, Zhang B, Zang JL, Wang GY, Gao MH (2009) CD59 silencing via retrovirus-mediated RNA interference enhanced complement-mediated cell damage in ovary cancer. Cell Mol Immunol 6:61–66PubMedCrossRefGoogle Scholar
  34. 34.
    Ortaldo JR, Woodhouse C, Morgan AC, Herberman RB, Cheresh DA, Reisfeld R (1987) Analysis of effector cells in human antibody-dependent cellular cytotoxicity with murine monoclonal antibodies. J Immunol 138:3566–3572PubMedGoogle Scholar
  35. 35.
    Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446PubMedCrossRefGoogle Scholar
  36. 36.
    Fehniger TA, Bluman EM, Porter MM, Mrózek E, Cooper MA, Van Deusen JB, Frankel SR, Stock W, Caligiuri MA (2000) Potential mechanisms of human natural killer cell expansion in vivo during low-dose IL-2 therapy. J Clin Invest 106:117–124PubMedCrossRefGoogle Scholar
  37. 37.
    Caron PC, Lai LT, Scheinberg DA (1995) Interleukin-2 enhancement of cytotoxicity by humanized monoclonal antibody M195 (anti-CD33) in myelogenous leukemia. Clin Cancer Res 1:63–70PubMedGoogle Scholar
  38. 38.
    Krikun G, Hu Z, Osteen K, Bruner-Tran KL, Schatz F, Taylor HS, Toti P, Arcuri F, Konigsberg W, Garen A, Booth CJ, Lockwood CJ (2010) The immunoconjugate “icon” targets aberrantly expressed endothelial tissue factor causing regression of endometriosis. Am J Pathol 176:1050–1056PubMedCrossRefGoogle Scholar
  39. 39.
    Tezel TH, Bodek E, Sonmez K, Kaliappan S, Kaplan HJ, Hu Z, Garen A (2007) Targeting tissue factor for immunotherapy of choroidal neovascularization by intravitreal delivery of factor VII-Fc chimeric antibody. Ocular Immunol Inflamm 15:3–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Emiliano Cocco
    • 1
  • Joyce Varughese
    • 1
  • Natalia Buza
    • 2
  • Stefania Bellone
    • 1
  • Ken-Yu Lin
    • 1
  • Marta Bellone
    • 1
  • Paola Todeschini
    • 1
  • Dan-Arin Silasi
    • 1
  • Masoud Azodi
    • 1
  • Peter E. Schwartz
    • 1
  • Thomas J. Rutherford
    • 1
  • Luisa Carrara
    • 1
  • Renata Tassi
    • 3
  • Sergio Pecorelli
    • 3
  • Charles J. Lockwood
    • 1
  • Alessandro D. Santin
    • 1
  1. 1.Department of Obstetrics, Gynecology & Reproductive SciencesYale University School of MedicineNew HavenUSA
  2. 2.PathologyYale University School of MedicineNew HavenUSA
  3. 3.Division of Gynecologic OncologyUniversity of BresciaBresciaItaly

Personalised recommendations