Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity

  • Gordana Radosavljevic
  • Ivan Jovanovic
  • Ivana Majstorovic
  • Maja Mitrovic
  • Vanda Juranic Lisnic
  • Nebojsa Arsenijevic
  • Stipan Jonjic
  • Miodrag L. Lukic
Research Paper


Galectin-3, a β galactoside–binding lectin, plays an important role in the processes relevant to tumorigenesis such as malignant cell transformation, invasion and metastasis. We have investigated whether deletion of Galectin-3 in the host affects the metastasis of B16F1 malignant melanoma. Galectin-3-deficient (Gal-3−/−) mice are more resistant to metastatic malignant melanoma as evaluated by number and size of metastatic colonies in the lung. In vitro assays showed lower number of attached malignant cells in the tissue section derived from Gal-3−/− mice. Furthermore, lack of Galectin-3 correlates with higher serum levels of IFN-γ and IL-17 in tumor bearing hosts. Interestingly, spleens of Gal-3−/− mice have lower number of Foxp3+ T cells after injection of B16F1 melanoma cells. Finally, we found that while CD8+ T cell and adherent cell cytotoxicity were similar, there was greater cytotoxic activity of splenic NK cells of Gal-3−/− mice compared with “wild-type” (Gal-3 +/+ ) mice. Despite the reduction in total number of CD3εNK1.1+, Gal-3−/− mice constitutively have a significantly higher percentage of effective cytotoxic CD27highCD11bhigh NK cells as well as the percentage of immature CD27highCD11blow NK cells. In contrast, CD27lowCD11bhigh less functionally exhausted NK cells and NK cells bearing inhibitory KLRG1 receptor were more numerous in Gal-3 +/+ mice. It appears that lack of Galectin-3 affects tumor metastasis by at least two independent mechanisms: by a decrease in binding of melanoma cells onto target tissue and by enhanced NK-mediated anti-tumor response suggesting that Galectin-3 may be considered as therapeutic target.


B16F1 Galectin-3 Malignant melanoma Metastasis NK cells 



Murine skin melanoma cell line










Killer cell lectin-like receptor G1

NK cells

Natural killer cells


Tumor necrosis-alpha



This work was supported by grants from the Ministry of Science and Technological Development (project number 175071 and 175069), Serbia and from the Croatian Ministry of Science (0062004 and 0062007), Croatia. We thank Dragana Markovic and Milan Milojevic for excellent technical assistance.


  1. 1.
    Sato S, Hughes RCJ (1994) Regulation of secretion and surface expression of Mac-2, a galactoside-binding protein of macrophages. J Biol Chem 269:4424–4430PubMedGoogle Scholar
  2. 2.
    Moutsatsos IK, Wade M, Schindler M et al (1987) Endogenous lectins from cultured cells: nuclear localization of carbohydrate binding protein 35 in proliferating 3T3 fibroblasts. Proc Natl Acad Sci USA 84:6452–6456PubMedCrossRefGoogle Scholar
  3. 3.
    Perillo NL, Marcus ME, Baum LG (1998) Galectins: Versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med 76:402–412PubMedCrossRefGoogle Scholar
  4. 4.
    Dumic J, Dabelic S, Flögel M (2006) Galectin-3: an open-ended story. Biochim Biophys Acta 1760:616–635PubMedGoogle Scholar
  5. 5.
    Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5:29–41PubMedCrossRefGoogle Scholar
  6. 6.
    Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17PubMedCrossRefGoogle Scholar
  7. 7.
    Yilmaz M, Christofori G, Lehembre F (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 13(12):535–541PubMedCrossRefGoogle Scholar
  8. 8.
    Nicolson GL, Winkelhake JL (1975) Organ specificity of blood-borne tumour metastasis determined by cell adhesion? Nature 255:230–232PubMedCrossRefGoogle Scholar
  9. 9.
    Miles FL, Pruitt FL, van-Golen KL et al (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25:305–324PubMedCrossRefGoogle Scholar
  10. 10.
    Zhao Q, Guo X, Nash GB et al (2009) Circulating Galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res 69(17):6799–6806PubMedCrossRefGoogle Scholar
  11. 11.
    Takenaka Y, Fukumori T, Raz A (2004) Galectin-3 and metastasis. Glycoconj J 19:543–549PubMedCrossRefGoogle Scholar
  12. 12.
    Glinsky VV, Glinsky GV, Rittenhouse-Olson K et al (2001) The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 61:4851–4857PubMedGoogle Scholar
  13. 13.
    Krishnan V, Bane SM, Kawle PD et al (2005) Altered melanoma cell surface glycosylation mediates organ specific adhesion and via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis 22:11–24PubMedCrossRefGoogle Scholar
  14. 14.
    Danguy A, Camby I, Kiss R (2002) Galectins and cancers. Biochim Biopys Acta 1572:285–293Google Scholar
  15. 15.
    Prieto VG, Mourad-Zeidan AA, Melnikova V et al (2006) Galectin-3 expression is associated with tumor progression and pattern of sun exposure in melanoma. Clin Cancer Res 12:6709–6715PubMedCrossRefGoogle Scholar
  16. 16.
    Iurisci I, Tinari N, Natoli C et al (2000) Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 6:1389–1393PubMedGoogle Scholar
  17. 17.
    Vereecken P, Zouaoui Boudjeltia K, Debray C et al (2006) High serum galectin-3 in advanced melanoma: preliminary results. Clin Exp Dermatol 31:105–109PubMedCrossRefGoogle Scholar
  18. 18.
    Ochieng J, Warfield P, Green-Jarvis B et al (1999) Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin. J Cell Biochem 75:505–514PubMedCrossRefGoogle Scholar
  19. 19.
    Le Marer N, Hughes RC (1996) Effects of the carbohydrate-binding protein galectin-3 on the invasiveness of human breast carcinoma cells. J Cell Physiol 168:51–58PubMedCrossRefGoogle Scholar
  20. 20.
    Thijssen VL, Poirier F, Baum LG et al (2007) Galectins in the tumor endothelium: opportunities for combined cancer therapy. Blood 110(8):2819–2827PubMedCrossRefGoogle Scholar
  21. 21.
    Smyth MJ, Hayakawa Y, Takeda K et al (2002) New aspects of natural-killer cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861PubMedCrossRefGoogle Scholar
  22. 22.
    Yu P, Fu YX (2006) Tumor-infiltrating T lymphcytes: friends or foels? Lab Invest 86:231–245PubMedCrossRefGoogle Scholar
  23. 23.
    Zubieta MR, Furman D, Barrio M et al (2006) Galectin-3 expression correlates with apoptosis of tumor-associated lymphocytes in human melanoma biopsies. Am J Pathol 168:1666–1675PubMedCrossRefGoogle Scholar
  24. 24.
    Peng W, Wang HY, Miyahara Y et al (2008) Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res 68:7228–7236PubMedCrossRefGoogle Scholar
  25. 25.
    Lee VH, Lee AB, Phillips EB et al (1998) Spatio-temporal pattern for expression of galectin-3 in the murine utero-placental complex: Evidence for differential regulation. Biol Reprod 58:1277–1282PubMedCrossRefGoogle Scholar
  26. 26.
    Crider-Pirkle S, Billingsley P, Faust C et al (2002) Cubilin, a binding partner for galectin-3 in the murine utero-placental complex. J Biol Chem 277(18):15904–15912PubMedCrossRefGoogle Scholar
  27. 27.
    Grundy MA, Zhang T, Sentman CL (2007) NK cells rapidly remove B16F10 tumor cells in a perforin and interferon-gamma independent manner in vivo. Cancer Immunol Immunother 56:1153–1161PubMedCrossRefGoogle Scholar
  28. 28.
    Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197PubMedCrossRefGoogle Scholar
  29. 29.
    Hsu DK, Yang RY, Pan Z et al (1994) Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 156:1073–1083CrossRefGoogle Scholar
  30. 30.
    Edward M, Gold JA, McKie MR (1989) Modulation of melanoma cell adhesion to basement membrane components by retinoic acid. J Cell Sci 93:155–161PubMedGoogle Scholar
  31. 31.
    Netland PA, Zetter BR (1984) Organ-specific adhesion of metastatic tumor cells in vitro. Science 224:1113–1135PubMedCrossRefGoogle Scholar
  32. 32.
    Janjic BM, Lu G, Pimenov A et al (2002) Innate direct anticancer effector function of human immature dendritic cells. I. Involvement of an apoptosis-inducing pathway. J Immunol 168(4):1823–1830PubMedGoogle Scholar
  33. 33.
    Richards J, McNally B, Fang X et al (2008) Tumor growth decreases NK and B cells as well as common lymphoid progenitor. PLoS One 3(9):e3180PubMedCrossRefGoogle Scholar
  34. 34.
    Calof AL, Campanero MR, O’Rear JJ et al (1994) Domain-specific activation of neuronal migration and neurite outgrowth- promoting activities of laminin. Neuron 13(1):117–130PubMedCrossRefGoogle Scholar
  35. 35.
    Raz A, Zhu DG, Hogan V et al (1990) Evidence for the role of 34 kDa galactoside-binding lectin in transformation and metastasis. Int J Cancer 46:871–877PubMedCrossRefGoogle Scholar
  36. 36.
    Nakahara S, Oka N, Raz A (2005) On the role of galectin-3 in cancer apoptosis. Apoptosis 10:267–275PubMedCrossRefGoogle Scholar
  37. 37.
    Fukumori T, Oka N, Takenaka Y et al (2006) Galectin-3 regulates mitochondrial stability and antiapoptotic function in respons to anticancer drug in prostate cancer. Cancer Res 66(6):3114–3119PubMedCrossRefGoogle Scholar
  38. 38.
    Ashery U, Yizhar O, Rotblat B et al (2006) Spatiotemporal organization of ras signaling: rasosomes and the galectin switch. Cell Mol Neurobiol 26:471–495PubMedCrossRefGoogle Scholar
  39. 39.
    Shimura T, Takenaka Y, Tsutsumi S et al (2004) Galectin-3, a novel binding partner of beta-catenin. Cancer Res 64:6363–6367PubMedCrossRefGoogle Scholar
  40. 40.
    Shimura T, Takenaka Y, Fukumori T et al (2005) Implication of galectin-3 in Wnt signaling. Cancer Res 65:3535–3537PubMedCrossRefGoogle Scholar
  41. 41.
    Paron I, Scaloni A, Pines A et al (2003) Nuclear localization of Galectin-3 in transformed thyroid cells: a role in transcriptional regulation. Biochem Biophys Res Commun 302:545–553PubMedCrossRefGoogle Scholar
  42. 42.
    Nangia-Makker P, Balan V, Raz A (2008) Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron 1(1):43–51PubMedCrossRefGoogle Scholar
  43. 43.
    Abdel-Aziz HO, Murai Y, Takasaki I et al (2008) Targeted disruption of the galectin-3 gene results in decreased susceptibility to NNK-induced lung tumorigenesis: An oligonucleotide microarray study. J Cancer Res Clin Oncol 134(7):777–788PubMedCrossRefGoogle Scholar
  44. 44.
    Vereecken P, Zouaoui Boudjeltia K, Debray C et al (2005) High serum galectin-3 in advanced melanoma: preliminary results. Clin Exp Dermatol 31(1):105–109CrossRefGoogle Scholar
  45. 45.
    Dittmar T, Heyder C, Gloria-Maercker E et al (2008) Adhesion molecules and chemokines: The navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis 25:11–32PubMedCrossRefGoogle Scholar
  46. 46.
    Dennis JW, Laferté S, Waghorne C et al (1987) Beta 1–6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236:582–585PubMedCrossRefGoogle Scholar
  47. 47.
    Lu Y, Pelling JC, Chaney WG (1994) Tumor cell surface b1–6 linked branched oligosaccharides and lung metastasis. Clin Exp Metast 12:47–54CrossRefGoogle Scholar
  48. 48.
    Chakraborty AK, Pawelek J, Ikeda Y et al (2001) Fusion hybrids with macrophage and melanoma cells up-regulate N-acetylglucosaminyltransferase V, beta1-6 branching, and metastasis. Cell Growth Diff 12:623–630PubMedGoogle Scholar
  49. 49.
    Khaldoyanidi SK, Glinsky VV, Sikora L et al (2003) MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions. J Biol Chem 278:4127–4134PubMedCrossRefGoogle Scholar
  50. 50.
    Zhao Q, Barclay M, Hilkens J et al (2010) Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Cancer 9:154PubMedCrossRefGoogle Scholar
  51. 51.
    Ghiringhelli F, Menard C, Terme M et al (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell function in a transforming growth factor-β-dependent manner. J Exp Med 202(8):1075–1085PubMedCrossRefGoogle Scholar
  52. 52.
    Smyth MJ, Teng MWL, Swann J et al (2006) CD4+CD25+ regulatory T cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176(3):1582–1587PubMedGoogle Scholar
  53. 53.
    Passos ST, Silver JS, O’Hara ACO et al (2010) IL-6 promotes NK cell production of IL-17 during toxoplasmosis. J Immunol 184:1776–1783PubMedCrossRefGoogle Scholar
  54. 54.
    Smyth MJ, Hayakawa Y, Takeda K et al (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2(11):850–861PubMedCrossRefGoogle Scholar
  55. 55.
    Muller AJ, Scherle PA (2006) Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer 6:742CrossRefGoogle Scholar
  56. 56.
    Javia LR, Rosenberg SA (2003) CD4+CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J Immunother 26:85–93PubMedCrossRefGoogle Scholar
  57. 57.
    Marshall NA, Christie LE, Munro LR et al (2004) Immunosuppressive regulatory T cells are abudant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103:1755–1762PubMedCrossRefGoogle Scholar
  58. 58.
    Sutmuller RP, van Duivenvoorde LM, van Elsas A et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative patways for suppression of autoreactive cytotoxic T lymphocyte response. J Exp Med 194:823–832PubMedCrossRefGoogle Scholar
  59. 59.
    Kryczek I, Wei S, Szeliga W et al (2009) Endogenous I-17 contributes to reduced tumor growth and metastasis. Blood 114(2):357–359PubMedCrossRefGoogle Scholar
  60. 60.
    Zou W, Restifo NP (2010) Th17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 10:248–256PubMedCrossRefGoogle Scholar
  61. 61.
    Ishigami S, Natsugoe S, Tokuda K et al (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88:577–583PubMedCrossRefGoogle Scholar
  62. 62.
    Villegas FR, Coca S, Villarrubia VG et al (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35:23–28PubMedCrossRefGoogle Scholar
  63. 63.
    Whiteside TL, Herberman RB (1994) Role of human natural killer cells in health and disease. Clin Diag Lab Immunol 1:125–133Google Scholar
  64. 64.
    Hayakawa Y, Smyth MJ (2006) CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176:1517–1524PubMedGoogle Scholar
  65. 65.
    Ito M, Maruyama T, Saito N et al (2006) Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med 203:289–295PubMedCrossRefGoogle Scholar
  66. 66.
    Beyersdorf NB, Ding X, Karp K et al (2001) Expression of inhibitory “killer cell lectin-like receptor G1” identifies unique subpopulations of effector and memory CD8 T cells. Eur J Immunol 31:3443–3452PubMedCrossRefGoogle Scholar
  67. 67.
    Andrews DM, Scalzo AA, Yokoyama WM et al (2003) Functional interactions between dendritic cells NK cells during viral infection. Nat Immunol 4:175–181PubMedCrossRefGoogle Scholar
  68. 68.
    Robbins SH, Nguyen KB, Takahashi N et al (2002) Cutting edge: inhibitory functions of the killer cell lectin-like receptor G1 molecule during the activation of mouse NK cells. J Immunol 168:2585–2589PubMedGoogle Scholar
  69. 69.
    Huntigton ND, Tabarias H, Fairfax K et al (2007) NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation. J Immunol 178:4764–4770Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gordana Radosavljevic
    • 1
  • Ivan Jovanovic
    • 1
  • Ivana Majstorovic
    • 3
  • Maja Mitrovic
    • 2
  • Vanda Juranic Lisnic
    • 2
  • Nebojsa Arsenijevic
    • 1
  • Stipan Jonjic
    • 2
  • Miodrag L. Lukic
    • 1
  1. 1.Center for Molecular Medicine, Faculty of MedicineUniversity of KragujevacKragujevacSerbia
  2. 2.Department of Histology and Embryiology, Faculty of MedicineUniversity of RijekaRijekaCroatia
  3. 3.Military Medical AcademyBelgradeSerbia

Personalised recommendations