Clinical & Experimental Metastasis

, Volume 26, Issue 4, pp 381–397 | Cite as

Profiling distinct mechanisms of tumour invasion for drug discovery: imaging adhesion, signalling and matrix turnover

Research Paper


Recent advances in microscopic imaging technology, fluorescent reporter reagents, 3-dimensional (3D) cell models and multiparametric image analysis have enhanced our ability to model and understand complex cell physiology. Extension of these approaches to live cell, kinetic studies allows further spatial and temporal understanding of a multitude of dynamic functional events, including tumour cell invasion. Recent in vivo and 3D in vitro studies reveal how tumour cells utilize a diverse variety of mechanisms to permit invasion through 3D tissue environments. Such high degrees of diversity and plasticity between invasion mechanisms present a significant challenge to the successful treatment of malignant cancer. This review examines how advances in time-resolved imaging has contributed to the characterization of distinct modes of invasion and their associated molecular mechanisms. Specifically, we highlight the development of fluorescent reporter molecules and their incorporation into more predictive 3D in vitro and in vivo models, to enhance mechanistic analysis of tumour invasion. We also highlight the latest advances in kinetic imaging instrumentation applicable to in vitro and in vivo models of tumour invasion. We discuss how multiparametric image analysis can be used to interpret image data generated by these approaches. We further discuss how these approaches can be integrated into drug discovery pipelines to facilitate evaluation and selection of candidate drugs and novel pharmaceutical compositions, targeting multiple invasive mechanisms.


Kinetic imaging Integrin Focal adhesions Src FAK Calpain MMP 3D models Intravital imaging Multiparametic analysis Mechanism-of-action Combination therapy 





Extracellular matrix


Focal adhesion kinase


Matrix metalloproteinase


Green fluorescent protein


Fluorescence resonance energy transfer


Fluorescence lifetime imaging


Fluorescence recovery after photobleaching


Time correlated single photon counting


Total internal reflection fluorescence


Reactive oxygen species


Chromophore activated light inactivation






Rho kinase


Myotonic dystrophy kinase-related Cdc42-binding kinase



I would like to thank Andy Hargreaves, Director of the Advanced Science and Technology Lab, AstraZeneca and Margaret Frame, Assistant Director of the Beatson Institute for Cancer Research for their support in these studies and writing of this review article.


  1. 1.
    Price JT, Thompson EW (2002) Mechanisms of tumour invasion and metastasis: emerging targets for therapy. Expert Opin Ther Targets 6:217–233. doi: 10.1517/14728222.6.2.217 PubMedCrossRefGoogle Scholar
  2. 2.
    Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16:14–23. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  3. 3.
    ParmoCabanas M, MolinaOrtiz I, MatiasRoman S et al (2006) Role of metalloproteinases MMP-9 and MT1-MMP in CXCL12-promoted myeloma cell invasion across basement membranes. J Pathol 208:108–118. doi: 10.1002/path.1876 CrossRefGoogle Scholar
  4. 4.
    Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5:711–719. doi: 10.1038/ncb1019 PubMedCrossRefGoogle Scholar
  5. 5.
    Wolf K, Mazo I, Leung H et al (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277. doi: 10.1083/jcb.200209006 PubMedCrossRefGoogle Scholar
  6. 6.
    Lang P, Yeow K, Nichols A, Scheer A (2006) Cellular imaging in drug discovery. Nat Rev Drug Discov 5:343–356. doi: 10.1038/nrd2008 PubMedCrossRefGoogle Scholar
  7. 7.
    Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ (2004) Multidimensional drug profiling by automated microscopy. Science 306:1194–1198. doi: 10.1126/science.1100709 PubMedCrossRefGoogle Scholar
  8. 8.
    Tanaka M, Bateman R, Rauh D et al (2005) An unbiased cell morphology-based screen for new, biologically active small molecules. Plos Biol 3:e128. doi: 10.1371/journal.pbio.0030128 PubMedCrossRefGoogle Scholar
  9. 9.
    Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:21. doi: 10.1186/1472-6750-4-21 PubMedCrossRefGoogle Scholar
  10. 10.
    Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224. doi: 10.1126/science.1124618 PubMedCrossRefGoogle Scholar
  11. 11.
    Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88. doi: 10.1038/nbt1172 PubMedCrossRefGoogle Scholar
  12. 12.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909. doi: 10.1038/nmeth819 PubMedCrossRefGoogle Scholar
  13. 13.
    Bruchez MP (2005) Turning all the lights on: quantum dots in cellular assays. Curr Opin Chem Biol 9:533–537. doi: 10.1016/j.cbpa.2005.08.019 PubMedCrossRefGoogle Scholar
  14. 14.
    Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976. doi: 10.1038/nbt994 PubMedCrossRefGoogle Scholar
  15. 15.
    Estrada CR, Salanga M, Bielenberg DR et al (2006) Behavioral profiling of human transitional cell carcinoma ex vivo. Cancer Res 66:3078–3086. doi: 10.1158/0008-5472.CAN-05-3391 PubMedCrossRefGoogle Scholar
  16. 16.
    Gu W, Pellegrino T, Parak WJ et al (2007) Measuring cell motility using quantum dot probes. Methods Mol Biol 374:125–131PubMedGoogle Scholar
  17. 17.
    Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998. doi: 10.1038/nm1096 PubMedCrossRefGoogle Scholar
  18. 18.
    Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Innovation: Photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6:885–991. doi: 10.1038/nrm1741 PubMedCrossRefGoogle Scholar
  19. 19.
    Bulina ME, Chudakov DM, Britanova OV et al (2006) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99. doi: 10.1038/nbt1175 PubMedCrossRefGoogle Scholar
  20. 20.
    Jay DG, Sakurai T (1999) Chromophore-assisted laser inactivation (CALI) to elucidate cellular mechanisms of cancer. Biochim Biophys Acta 1424:M39–M48PubMedGoogle Scholar
  21. 21.
    Tour O, Meijer RM, Zacharias DA, Adams SR, Tsien RY (2003) Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol 21:1505–1508. doi: 10.1038/nbt914 PubMedCrossRefGoogle Scholar
  22. 22.
    Clayton AH, Tavarnesi ML, Johns TG (2007) Unligated epidermal growth factor receptor forms higher order oligomers within microclusters on A431 cells that are sensitive to tyrosine kinase inhibitor binding. Biochemistry 46:4589–4597. doi: 10.1021/bi700002b PubMedCrossRefGoogle Scholar
  23. 23.
    Sato M, Ozawa T, Inukai K, Asano T, Umezawa Y (2002) Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat Biotechnol 20:287–294. doi: 10.1038/nbt0302-287 PubMedCrossRefGoogle Scholar
  24. 24.
    Ting AY, Kain KH, Klemke RL, Tsien RY (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci USA 98:15003–15008. doi: 10.1073/pnas.211564598 PubMedCrossRefGoogle Scholar
  25. 25.
    Vanderklish PW, Krushel LA, Holst BH, Gally JA, Crossin KL, Edelman GM (2000) Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc Natl Acad Sci USA 97:2253–2258. doi: 10.1073/pnas.040565597 PubMedCrossRefGoogle Scholar
  26. 26.
    Grant DM, Elson DS, Schimpf D et al (2005) Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source. Opt Lett 30:3353–3355. doi: 10.1364/OL.30.003353 PubMedCrossRefGoogle Scholar
  27. 27.
    Uchimura T, Kawanabe S, Maeda Y, Imasaka T (2006) Fluorescence lifetime imaging microscope consisting of a compact picosecond dye laser and a gated charge-coupled device camera for applications to living cells. Anal Sci 22:1291–1295. doi: 10.2116/analsci.22.1291 PubMedCrossRefGoogle Scholar
  28. 28.
    Carragher NO, Frame MC (2004) Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 14:241–249. doi: 10.1016/j.tcb.2004.03.011 PubMedCrossRefGoogle Scholar
  29. 29.
    Webb DJ, Brown CM, Horwitz AF (2003) Illuminating adhesion complexes in migrating cells: moving toward a bright future. Curr Opin Cell Biol 15:614–620. doi: 10.1016/S0955-0674(03)00105-4 PubMedCrossRefGoogle Scholar
  30. 30.
    Miller WH, Keenan RM, Willette RN, Lark MW (2000) Identification and in vivo efficacy of small-molecule antagonists of integrin alphavbeta3 (the vitronectin receptor). Drug Discov Today 5:397–408. doi: 10.1016/S1359-6446(00)01545-2 PubMedCrossRefGoogle Scholar
  31. 31.
    Ellerbroek SM, Fishman DA, Kearns AS, Bafetti LM, Stack MS (1999) Ovarian carcinoma regulation of matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase through beta1 integrin. Cancer Res 59:1635–1641PubMedGoogle Scholar
  32. 32.
    Fishman DA, Kearns A, Chilukuri K et al (1998) Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha2beta1-integrin-mediated interaction with type I collagen. Invasion Metastasis 18:15–26. doi: 10.1159/000024495 PubMedCrossRefGoogle Scholar
  33. 33.
    Zutter MM, Santoro SA, Staatz WD, Tsung YL (1995) Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proc Natl Acad Sci USA 92:7411–7415. doi: 10.1073/pnas.92.16.7411 PubMedCrossRefGoogle Scholar
  34. 34.
    Plancon S, Morel-Kopp MC, Schaffner-Reckinger E, Chen P, Kieffer N (2001) Green fluorescent protein (GFP) tagged to the cytoplasmic tail of alphaIIb or beta3 allows the expression of a fully functional integrin alphaIIb(beta3): effect of beta3GFP on alphaIIb(beta3) ligand binding. Biochem J 357:529–536. doi: 10.1042/0264-6021:3570529 PubMedCrossRefGoogle Scholar
  35. 35.
    Ballestrem C, Hinz B, Imhof BA, WehrleHaller B (2001) Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. J Cell Biol 155:1319–1332. doi: 10.1083/jcb.200107107 PubMedCrossRefGoogle Scholar
  36. 36.
    Ramsay AG, Marshall JF, Hart IR (2007) Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev 26:567–578. doi: 10.1007/s10555-007-9078-7 PubMedCrossRefGoogle Scholar
  37. 37.
    Caswell PT, Spence HJ, Parsons M et al (2007) Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell 13:496–510. doi: 10.1016/j.devcel.2007.08.012 PubMedCrossRefGoogle Scholar
  38. 38.
    Cai X, Lietha D, Ceccarelli DF et al (2008) Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol Cell Biol 28:201–214. doi: 10.1128/MCB.01324-07 PubMedCrossRefGoogle Scholar
  39. 39.
    Wang Y, Chien S (2007) Analysis of integrin signaling by fluorescence resonance energy transfer. Methods Enzymol 426:177–201. doi: 10.1016/S0076-6879(07)26009-4 PubMedCrossRefGoogle Scholar
  40. 40.
    Hegerfeldt Y, Tusch M, Brocker EB, Friedl P (2002) Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res 62:2125–2130PubMedGoogle Scholar
  41. 41.
    von Wallbrunn A, Holtke C, Zuhlsdorf M, Heindel W, Schafers M, Bremer C (2007) In vivo imaging of integrin alpha v beta 3 expression using fluorescence-mediated tomography. Eur J Nucl Med Mol Imaging 34:745–754. doi: 10.1007/s00259-006-0269-1 CrossRefGoogle Scholar
  42. 42.
    Stehbens SJ, Paterson AD, Crampton MS et al (2006) Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. J Cell Sci 119:1801–1811. doi: 10.1242/jcs.02903 PubMedCrossRefGoogle Scholar
  43. 43.
    Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–3590PubMedGoogle Scholar
  44. 44.
    Miyamoto S, Akiyama SK, Yamada KM (1995) Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267:883–885. doi: 10.1126/science.7846531 PubMedCrossRefGoogle Scholar
  45. 45.
    Webb DJ, Donais K, Whitmore LA et al (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6:154–161. doi: 10.1038/ncb1094 PubMedCrossRefGoogle Scholar
  46. 46.
    ZaidelBar R, Ballestrem C, Kam Z, Geiger B (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 116:4605–4613. doi: 10.1242/jcs.00792 CrossRefGoogle Scholar
  47. 47.
    Humphrey D, Rajfur Z, Vazquez ME et al (2005) In situ photoactivation of a caged phosphotyrosine peptide derived from focal adhesion kinase temporarily halts lamellar extension of single migrating tumor cells. J Biol Chem 280:22091–22101. doi: 10.1074/jbc.M502726200 PubMedCrossRefGoogle Scholar
  48. 48.
    Rajfur Z, Roy P, Otey C, Romer L, Jacobson K (2002) Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat Cell Biol 4:286–293. doi: 10.1038/ncb772 PubMedCrossRefGoogle Scholar
  49. 49.
    Choma DP, Milano V, Pumiglia KM, DiPersio CM (2007) Integrin alpha3beta1-dependent activation of FAK/Src regulates Rac1-mediated keratinocyte polarization on laminin-5. J Invest Dermatol 127:31–40. doi: 10.1038/sj.jid.5700505 PubMedCrossRefGoogle Scholar
  50. 50.
    Carragher NO, Levkau B, Ross R, Raines EW (1999) Degraded collagen fragments promote rapid disassembly of smooth muscle focal adhesions that correlates with cleavage of pp125(FAK), paxillin, and talin. J Cell Biol 147:619–630. doi: 10.1083/jcb.147.3.619 PubMedCrossRefGoogle Scholar
  51. 51.
    Cuevas BD, Abell AN, Witowsky JA et al (2003) MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts. EMBO J 22:3346–3355. doi: 10.1093/emboj/cdg322 PubMedCrossRefGoogle Scholar
  52. 52.
    Franco SJ, Rodgers MA, Perrin BJ et al (2004) Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 6:977–983. doi: 10.1038/ncb1175 PubMedCrossRefGoogle Scholar
  53. 53.
    Huttenlocher A, Palecek SP, Lu Q et al (1997) Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem 272:32719–32722. doi: 10.1074/jbc.272.52.32719 PubMedCrossRefGoogle Scholar
  54. 54.
    Perrin BJ, Amann KJ, Huttenlocher A (2006) Proteolysis of cortactin by calpain regulates membrane protrusion during cell migration. Mol Biol Cell 17:239–250. doi: 10.1091/mbc.E05-06-0488 PubMedCrossRefGoogle Scholar
  55. 55.
    Carragher NO, Fonseca BD, Frame MC (2004) Calpain activity is generally elevated during transformation but has oncogene-specific biological functions. Neoplasia 6:53–73PubMedGoogle Scholar
  56. 56.
    Carragher NO, Walker SM, Scott Carragher LA et al (2006) Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene 25:5726–5740. doi: 10.1038/sj.onc.1209582 PubMedCrossRefGoogle Scholar
  57. 57.
    Ellis C, Moran M, McCormick F, Pawson T (1990) Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343:377–381. doi: 10.1038/343377a0 PubMedCrossRefGoogle Scholar
  58. 58.
    Felsenfeld DP, Schwartzberg PL, Venegas A, Tse R, Sheetz MP (1999) Selective regulation of integrin–cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol 1:200–206. doi: 10.1038/12021 PubMedCrossRefGoogle Scholar
  59. 59.
    Frame MC, Fincham VJ, Carragher NO, Wyke JA (2002) v-Src’s hold over actin and cell adhesions. Nat Rev Mol Cell Biol 3:233–245. doi: 10.1038/nrm779 PubMedCrossRefGoogle Scholar
  60. 60.
    Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT (1991) Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol 11:5113–5124PubMedGoogle Scholar
  61. 61.
    Brugnera E, Haney L, Grimsley C et al (2002) Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4:574–582PubMedGoogle Scholar
  62. 62.
    Hildebrand JD, Taylor JM, Parsons JT (1996) An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol Cell Biol 16:3169–3178PubMedGoogle Scholar
  63. 63.
    Zhai J, Lin H, Nie Z et al (2003) Direct interaction of focal adhesion kinase with p190RhoGEF. J Biol Chem 278:24865–24873. doi: 10.1074/jbc.M302381200 PubMedCrossRefGoogle Scholar
  64. 64.
    Bretschneider T, Diez S, Anderson K et al (2004) Dynamic actin patterns and Arp2/3 assembly at the substrate-attached surface of motile cells. Curr Biol 14:1–10. doi: 10.1016/j.cub.2003.12.005 PubMedCrossRefGoogle Scholar
  65. 65.
    Krylyshkina O, Anderson KI, Kaverina I et al (2003) Nanometer targeting of microtubules to focal adhesions. J Cell Biol 161:853–859. doi: 10.1083/jcb.200301102 PubMedCrossRefGoogle Scholar
  66. 66.
    Manneville JB (2006) Use of TIRF microscopy to visualize actin and microtubules in migrating cells. Methods Enzymol 406:520–532. doi: 10.1016/S0076-6879(06)06040-X PubMedCrossRefGoogle Scholar
  67. 67.
    Cox EA, Huttenlocher A (1998) Regulation of integrin-mediated adhesion during cell migration. Microsc Res Tech 43:412–419. doi:10.1002/(SICI)1097-0029(19981201)43:5<412::AID-JEMT7>3.0.CO;2-FPubMedCrossRefGoogle Scholar
  68. 68.
    Friedl P, Zanker KS, Brocker EB (1998) Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 43:369–378. doi:10.1002/(SICI)1097-0029(19981201)43:5<369::AID-JEMT3>3.0.CO;2-6PubMedCrossRefGoogle Scholar
  69. 69.
    Petroll WM, Ma L (2003) Direct, dynamic assessment of cell-matrix interactions inside fibrillar collagen lattices. Cell Motil Cytoskeleton 55:254–264. doi: 10.1002/cm.10126 PubMedCrossRefGoogle Scholar
  70. 70.
    Wolf K, Wu YI, Liu Y et al (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904. doi: 10.1038/ncb1616 PubMedCrossRefGoogle Scholar
  71. 71.
    Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374. doi: 10.1038/nrc1075 PubMedCrossRefGoogle Scholar
  72. 72.
    Bjorklund M, Koivunen E (2005) Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 1755:37–69PubMedGoogle Scholar
  73. 73.
    Sanderson MP, Dempsey PJ, Dunbar AJ (2006) Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 24:121–136. doi: 10.1080/08977190600634373 PubMedCrossRefGoogle Scholar
  74. 74.
    White JM (2003) ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15:598–606. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  75. 75.
    Giannelli G, FalkMarzillier J, Schiraldi O, StetlerStevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228. doi: 10.1126/science.277.5323.225 PubMedCrossRefGoogle Scholar
  76. 76.
    Hooper S, Marshall JF, Sahai E (2006) Tumor cell migration in three dimensions. Methods Enzymol 406:625–643. doi: 10.1016/S0076-6879(06)06049-6 PubMedCrossRefGoogle Scholar
  77. 77.
    Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E (2006) ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 16:1515–1523. doi: 10.1016/j.cub.2006.05.065 PubMedCrossRefGoogle Scholar
  78. 78.
    Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930. doi: 10.1038/nrc1231 PubMedCrossRefGoogle Scholar
  79. 79.
    Xue C, Wyckoff J, Liang F et al (2006) Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res 66:192–197. doi: 10.1158/0008-5472.CAN-05-1242 PubMedCrossRefGoogle Scholar
  80. 80.
    Bremer C, Bredow S, Mahmood U, Weissleder R, Tung CH (2001) Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221:523–529. doi: 10.1148/radiol.2212010368 PubMedCrossRefGoogle Scholar
  81. 81.
    Bremer C, Tung CH, Weissleder R (2002) Molecular imaging of MMP expression and therapeutic MMP inhibition. Acad Radiol 9(Suppl 2):S314–S315. doi: 10.1016/S1076-6332(03)80214-3 PubMedCrossRefGoogle Scholar
  82. 82.
    Hsia DA, Mitra SK, Hauck CR et al (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160:753–767. doi: 10.1083/jcb.200212114 PubMedCrossRefGoogle Scholar
  83. 83.
    Lampugnani MG (1999) Cell migration into a wounded area in vitro. Methods Mol Biol 96:177–182PubMedGoogle Scholar
  84. 84.
    Chintala SK, Gokaslan ZL, Go Y, Sawaya R, Nicolson GL, Rao JS (1996) Role of extracellular matrix proteins in regulation of human glioma cell invasion in vitro. Clin Exp Metastasis 14:358–366. doi: 10.1007/BF00123395 PubMedCrossRefGoogle Scholar
  85. 85.
    Nystrom ML, Thomas GJ, Stone M, Mackenzie IC, Hart IR, Marshall JF (2005) Development of a quantitative method to analyse tumour cell invasion in organotypic culture. J Pathol 205:468–475. doi: 10.1002/path.1716 PubMedCrossRefGoogle Scholar
  86. 86.
    Hennigan RF, Hawker KL, Ozanne BW (1994) Fos-transformation activates genes associated with invasion. Oncogene 9:3591–3600PubMedGoogle Scholar
  87. 87.
    Gaggioli C, Sahai E (2007) Melanoma invasion - current knowledge and future directions. Pigment Cell Res 20:161–172. doi: 10.1111/j.1600-0749.2007.00378.x PubMedCrossRefGoogle Scholar
  88. 88.
    Goswami S, Sahai E, Wyckoff JB et al (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283. doi: 10.1158/0008-5472.CAN-04-1853 PubMedCrossRefGoogle Scholar
  89. 89.
    Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833. doi: 10.1038/nmeth1094 PubMedCrossRefGoogle Scholar
  90. 90.
    Rimsza LM, Leblanc ML, Unger JM et al (2008) Gene expression predicts overall survival in paraffin embedded tissues of diffuse large B cell lymphoma treated with R-CHOP. Blood 112:3425–3433PubMedCrossRefGoogle Scholar
  91. 91.
    Zaman MH, Matsudaira P, Lauffenburger DA (2007) Understanding effects of matrix protease and matrix organization on directional persistence and translational speed in three-dimensional cell migration. Ann Biomed Eng 35:91–100. doi: 10.1007/s10439-006-9205-6 PubMedCrossRefGoogle Scholar
  92. 92.
    Kharait S, Hautaniemi S, Wu S, Iwabu A, Lauffenburger DA, Wells A (2007) Decision tree modeling predicts effects of inhibiting contractility signaling on cell motility. BMC Syst Biol 1:9. doi: 10.1186/1752-0509-1-9 PubMedCrossRefGoogle Scholar
  93. 93.
    Rauh A, Windischhofer W, Kovacevic A et al (2008) Endothelin (ET)-1 and ET-3 promote expression of c-fos and c-jun in human choriocarcinoma via ET(B) receptor-mediated G(i)- and G(q)-pathways and MAP kinase activation. Br J Pharmacol 154:13–24. doi: 10.1038/bjp.2008.92 PubMedCrossRefGoogle Scholar
  94. 94.
    Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131. doi: 10.1038/nrd1007 PubMedCrossRefGoogle Scholar
  95. 95.
    Yamauchi K, Yang M, Jiang P et al (2006) Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66:4208–4214. doi: 10.1158/0008-5472.CAN-05-3927 PubMedCrossRefGoogle Scholar
  96. 96.
    Bullen A (2008) Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov 7:54–67. doi: 10.1038/nrd2446 PubMedCrossRefGoogle Scholar
  97. 97.
    Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7:737–749. doi: 10.1038/nrc2229 PubMedCrossRefGoogle Scholar
  98. 98.
    Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS (2005) Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol 15:138–145. doi: 10.1016/j.tcb.2005.01.003 PubMedCrossRefGoogle Scholar
  99. 99.
    Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656. doi: 10.1158/0008-5472.CAN-06-1823 PubMedCrossRefGoogle Scholar
  100. 100.
    Bailly M, Yan L, Whitesides GM, Condeelis JS, Segall JE (1998) Regulation of protrusion shape and adhesion to the substratum during chemotactic responses of mammalian carcinoma cells. Exp Cell Res 241:285–299. doi: 10.1006/excr.1998.4031 PubMedCrossRefGoogle Scholar
  101. 101.
    Alencar H, Mahmood U, Kawano Y, Hirata T, Weissleder R (2005) Novel multiwavelength microscopic scanner for mouse imaging. Neoplasia 7:977–983. doi: 10.1593/neo.05376 PubMedCrossRefGoogle Scholar
  102. 102.
    Booth MJ (2007) Adaptive optics in microscopy. Philos Transact A Math Phys Eng Sci 365:2829–2843PubMedCrossRefGoogle Scholar
  103. 103.
    Jung JC, Mehta AD, Aksay E, Stepnoski R, Schnitzer MJ (2004) In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J Neurophysiol 92:3121–3133. doi: 10.1152/jn.00234.2004 PubMedCrossRefGoogle Scholar
  104. 104.
    Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024. doi: 10.1364/OL.28.001022 PubMedCrossRefGoogle Scholar
  105. 105.
    Cui JF, Liu YK, Zhang LJ et al (2006) Identification of metastasis candidate proteins among HCC cell lines by comparative proteome and biological function analysis of S100A4 in metastasis in vitro. Proteomics 6:5953–5961. doi: 10.1002/pmic.200500460 PubMedCrossRefGoogle Scholar
  106. 106.
    Scott LA, Vass JK, Parkinson EK, Gillespie DA, Winnie JN, Ozanne BW (2004) Invasion of normal human fibroblasts induced by v-Fos is independent of proliferation, immortalization, and the tumor suppressors p16INK4a and p53. Mol Cell Biol 24:1540–1559. doi: 10.1128/MCB.24.4.1540-1559.2004 PubMedCrossRefGoogle Scholar
  107. 107.
    Lidke DS, Lidke KA, Rieger B, Jovin TM, Arndt-Jovin DJ (2005) Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J Cell Biol 170:619–626. doi: 10.1083/jcb.200503140 PubMedCrossRefGoogle Scholar
  108. 108.
    Hamadi A, Bouali M, Dontenwill M, Stoeckel H, Takeda K, Ronde P (2005) Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J Cell Sci 118:4415–4425. doi: 10.1242/jcs.02565 PubMedCrossRefGoogle Scholar
  109. 109.
    AdaNguema AS, Xenias H, Hofman JM, Wiggins CH, Sheetz MP, Keely PJ (2006) The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLCepsilon. J Cell Sci 119:1307–1319. doi: 10.1242/jcs.02835 CrossRefGoogle Scholar
  110. 110.
    Baatz M, Arini N, Schape A, Binnig G, Linssen B (2006) Object-oriented image analysis for high content screening: detailed quantification of cells and sub cellular structures with the Cellenger software. Cytometry A 69:652–658. doi: 10.1002/cyto.a.20289 PubMedGoogle Scholar
  111. 111.
    Murshid SA, Kamioka H, Ishihara Y, Ando R, Sugawara Y, TakanoYamamoto T (2007) Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3–E1 cells and osteocytes. J Bone Miner Metab 25:151–158. doi: 10.1007/s00774-006-0745-5 PubMedCrossRefGoogle Scholar
  112. 112.
    Michel R, Steinmeyer R, Falk M, Harms GS (2007) A new detection algorithm for image analysis of single, fluorescence-labeled proteins in living cells. Microsc Res Tech 70:763–770. doi: 10.1002/jemt.20485 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Advanced Science and Technology Laboratory, AstraZeneca CharnwoodLoughboroughUK

Personalised recommendations