Clinical & Experimental Metastasis

, Volume 24, Issue 8, pp 575–585 | Cite as

Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis

  • Keltouma Driouch
  • Thomas Landemaine
  • Soraya Sin
  • ShaoXiao Wang
  • Rosette Lidereau
Research Paper


The advent of microarray tools has generated a massive amount of gene expression data. These data have greatly enhanced our understanding of the biology of breast cancer metastasis and provide a way to improve the prediction of the metastatic potential of breast tumours. Gene-expression profiling has highlighted the molecular heterogeneity of mammary tumours and contributed to the identification of a new molecular classification of breast cancers. In addition, several molecular signatures predicting the likelihood of distant metastases for breast cancer patients have been characterized. Further reports have described gene expression profiles associated with specific metastatic phenotypes, including the organ preference of breast cancer metastasis. Here we review the major studies that had important impacts on the understanding of breast cancer metastasis. We also discuss the future challenges in this research field and the special issues that still need to be examined.


Gene expression profiles Breast cancer Metastasis 


  1. 1.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRefGoogle Scholar
  2. 2.
    Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedCrossRefGoogle Scholar
  3. 3.
    Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423PubMedCrossRefGoogle Scholar
  4. 4.
    Mullins M, Perreard L, Quackenbush JF et al (2007) Agreement in breast cancer classification between microarray and quantitative reverse transcription PCR from fresh-frozen and formalin-fixed, paraffin-embedded tissues. Clin Chem 53:1273–1279PubMedCrossRefGoogle Scholar
  5. 5.
    van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefGoogle Scholar
  6. 6.
    Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMedGoogle Scholar
  7. 7.
    Foekens JA, Atkins D, Zhang Y et al (2006) Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 24:1665–1671PubMedCrossRefGoogle Scholar
  8. 8.
    van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  9. 9.
    Sotiriou C, Neo SY, McShane LM et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398PubMedCrossRefGoogle Scholar
  10. 10.
    Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272PubMedGoogle Scholar
  11. 11.
    Ma XJ, Salunga R, Tuggle JT et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100:5974–5979PubMedCrossRefGoogle Scholar
  12. 12.
    Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602PubMedCrossRefGoogle Scholar
  13. 13.
    Goldhirsch A, Glick JH, Gelber RD et al (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16:1569–1583PubMedCrossRefGoogle Scholar
  14. 14.
    Goldhirsch A, Coates AS, Gelber RD et al (2006) First–select the target: better choice of adjuvant treatments for breast cancer patients. Ann Oncol 17:1772–1776PubMedCrossRefGoogle Scholar
  15. 15.
    Ma XJ, Wang Z, Ryan PD et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5:607–616PubMedCrossRefGoogle Scholar
  16. 16.
    Goetz MP, Suman VJ, Ingle JN et al (2006) A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin Cancer Res 12:2080–2087PubMedCrossRefGoogle Scholar
  17. 17.
    Jerevall PL, Brommesson S, Strand C et al (2007) Exploring the two-gene ratio in breast cancer-independent roles for HOXB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat (in press)Google Scholar
  18. 18.
    Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569PubMedCrossRefGoogle Scholar
  19. 19.
    Reid JF, Lusa L, De Cecco L et al (2005) Limits of predictive models using microarray data for breast cancer clinical treatment outcome. J Natl Cancer Inst 97:927–930PubMedGoogle Scholar
  20. 20.
    Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826PubMedCrossRefGoogle Scholar
  21. 21.
    Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:3726–3734PubMedCrossRefGoogle Scholar
  22. 22.
    Miller LD, Liu ET (2007) Expression genomics in breast cancer research: microarrays at the crossroads of biology and medicine. Breast Cancer Res 9:206PubMedCrossRefGoogle Scholar
  23. 23.
    Potti A, Dressman HK, Bild A et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12:1294–1300PubMedCrossRefGoogle Scholar
  24. 24.
    Chin K, DeVries S, Fridlyand J et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10:529–541PubMedCrossRefGoogle Scholar
  25. 25.
    Fidler IJ (2001) Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am 10:257–269, vii–viiiiGoogle Scholar
  26. 26.
    Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100:15901–15905PubMedCrossRefGoogle Scholar
  27. 27.
    Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158PubMedCrossRefGoogle Scholar
  28. 28.
    Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54PubMedCrossRefGoogle Scholar
  29. 29.
    Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  30. 30.
    Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRefGoogle Scholar
  31. 31.
    Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226PubMedCrossRefGoogle Scholar
  32. 32.
    Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273PubMedCrossRefGoogle Scholar
  33. 33.
    Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118:277–279PubMedCrossRefGoogle Scholar
  34. 34.
    Buck MB, Knabbe C (2006) TGF-beta signaling in breast cancer. Ann N Y Acad Sci 1089:119–126PubMedCrossRefGoogle Scholar
  35. 35.
    Chang HY, Sneddon JB, Alizadeh AA et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7PubMedCrossRefGoogle Scholar
  36. 36.
    Chang HY, Nuyten DS, Sneddon JB et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102:3738–3743PubMedCrossRefGoogle Scholar
  37. 37.
    Adler AS, Lin M, Horlings H et al (2006) Genetic regulators of large-scale transcriptional signatures in cancer. Nat Genet 38:421–430PubMedCrossRefGoogle Scholar
  38. 38.
    Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRefGoogle Scholar
  39. 39.
    Minn AJ, Kang Y, Serganova I et al (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55PubMedGoogle Scholar
  40. 40.
    Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedCrossRefGoogle Scholar
  41. 41.
    Lu X, Kang Y (2007) Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia 12:153–162 PubMedCrossRefGoogle Scholar
  42. 42.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRefGoogle Scholar
  43. 43.
    Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695PubMedCrossRefGoogle Scholar
  44. 44.
    Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904PubMedCrossRefGoogle Scholar
  45. 45.
    Bellahcene A, Bachelier R, Detry C et al (2007) Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 101:135–148PubMedCrossRefGoogle Scholar
  46. 46.
    Minn AJ, Gupta GP, Padua D et al (2007) Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci USA 104:6740–6745PubMedCrossRefGoogle Scholar
  47. 47.
    Smid M, Wang Y, Klijn JG et al (2006) Genes associated with breast cancer metastatic to bone. J Clin Oncol 24:2261–2267PubMedCrossRefGoogle Scholar
  48. 48.
    Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7:545–553PubMedCrossRefGoogle Scholar
  49. 49.
    Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492PubMedCrossRefGoogle Scholar
  50. 50.
    Loi S, Piccart M, Sotiriou C (2007) The use of gene-expression profiling to better understand the clinical heterogeneity of estrogen receptor positive breast cancers and tamoxifen response. Crit Rev Oncol Hematol 61:187–194PubMedCrossRefGoogle Scholar
  51. 51.
    Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Keltouma Driouch
    • 1
    • 2
  • Thomas Landemaine
    • 1
    • 2
  • Soraya Sin
    • 1
    • 2
  • ShaoXiao Wang
    • 1
    • 2
  • Rosette Lidereau
    • 1
    • 2
  1. 1.Centre René HugueninFNCLCCSaint-CloudFrance
  2. 2.INSERM U735/ Oncogénétique, Centre René HugueninSaint-CloudFrance

Personalised recommendations