Clinical & Experimental Metastasis

, Volume 24, Issue 8, pp 685–697 | Cite as

Soluble cadherins as cancer biomarkers

  • Olivier De Wever
  • Lara Derycke
  • An Hendrix
  • Gert De Meerleer
  • François Godeau
  • Herman Depypere
  • Marc Bracke
Research Paper


Molecular activities, regulating a balanced tissue organisation, are frequently disturbed during cancer progression. These include protein ectodomain shedding, a post-translational process that substantially changes the functional properties of the substrate protein. In comparison with normal epithelia, cancer cells almost invariably show diminished cadherin-mediated intercellular adhesion. This review will address cadherin ectodomain shedding and its functional consequence in normal physiology and in the tumor environment. Soluble cadherin fragments may retain specific biological activities during cancer cell invasion, angiogenesis and perineural invasion. When diffusion barriers disappear, soluble cadherins are detected in sera from cancer patients. Soluble N-(neural) cadherin may represent a novel diagnosis/prognostic biomarker showing a correlation with PSA in sera of prostate cancer patients. Furthermore, therapeutic monitoring in pancreas adenomacarcinoma revealed a correlation between circulating soluble N-cadherin and CA 19-9. A better understanding of cadherin regulation in cancer progression will likely increase our awareness of the importance of the combinatorial signals that regulate tissue integrity and eventually result in the identification of new therapeutics targeting cadherins.


N-cadherin E-cadherin Ectodomain shedding Stroma Perineural invasion Protease Angiogenesis 



G. De Bruyne and J. Roels are gratefully acknowledged for preparation of the illustrations. This work was funded by Fonds Wetenschappelijk Onderzoek (FWO)-Vlaanderen (Brussels, Belgium), Geconcerteerde Onderzoek Aangelegenheden (GOA, University Ghent, Belgium) and by the Sixth Framework program of the European Community (METABRE, LSHC-CT-2004-503049). O. De Wever was supported by METABRE and Bijzonder Onderzoeks Fonds (BOF, University Ghent, Belgium). L. Derycke was supported by FYTOES (Federale Overheidsdienst Volksgezondheid, Veiligheid voor de Voedselketen en Leefmilieu, Brussels, Belgium). A. Hendrix was supported by a fellowship from the ‘Stichting Emmanuel van der Schueren’.


  1. 1.
    Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695PubMedCrossRefGoogle Scholar
  2. 2.
    Van Aken E, De Wever O, Correia da Rocha AS, Mareel M (2001) Defective E-cadherin/catenin complexes in human cancer. Virchows Arch 439:725–751PubMedGoogle Scholar
  3. 3.
    De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447PubMedCrossRefGoogle Scholar
  4. 4.
    Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43PubMedCrossRefGoogle Scholar
  5. 5.
    Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30PubMedCrossRefGoogle Scholar
  6. 6.
    Levi E, Fridman R, Miao H-Q et al (1996) Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA 93:7069–7074PubMedCrossRefGoogle Scholar
  7. 7.
    Vecchi M, Rudolph-Owen LA, Brown CL et al (1998) Tyrosine phosphorylation and proteolysis. Pervanadate-induced, metalloprotease-dependent cleavage of the ErbB-4 receptor and amphiregulin. J Biol Chem 273:20589–20595PubMedCrossRefGoogle Scholar
  8. 8.
    Codony-Servat J, Albanell J, Lopez-Talavera JC et al (1999) Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res 59:1196–1201PubMedGoogle Scholar
  9. 9.
    Nath D, Williamson NJ, Jarvis R, Murphy G (2001) Shedding of c-Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J Cell Sci 114:1213–1220PubMedGoogle Scholar
  10. 10.
    Cavallaro U et al (2004) N-cadherin as an invasion promoter: a novel target for antitumor therapy? Curr Opin Investig Drugs 5:1274–1278PubMedGoogle Scholar
  11. 11.
    Noë V, Fingleton B, Jacobs K et al (2001) Release of an invasion promotor E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114:111–118PubMedGoogle Scholar
  12. 12.
    Damsky CH, Richa J, Solter D et al (1983) Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell 34:455–466PubMedCrossRefGoogle Scholar
  13. 13.
    Wheelock MJ, Buck CA, Bechtol KB, Damsky CH (1987) Soluble 80-kd fragment of cell-CAM 120/80 disrupts cell-cell adhesion. J Cell Biochem 34:187–202PubMedCrossRefGoogle Scholar
  14. 14.
    Symowicz J, Adley BP, Gleason KJ et al (2007) Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res 67:2030–2039PubMedCrossRefGoogle Scholar
  15. 15.
    Davies G, Jiang WG, Mason MD (2001) Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion. Clin Cancer Res 7:3289–3297PubMedGoogle Scholar
  16. 16.
    Ryniers F, Stove C, Goethals M et al (2002) Plasmin produces an E-cadherin fragment that stimulates cancer cell invasion. Biol Chem 383:159–165PubMedCrossRefGoogle Scholar
  17. 17.
    Hayashido Y, Hamana T, Yoshioka Y et al (2005) Plasminogen activator/plasmin system suppresses cell-cell adhesion of oral squamous cell carcinoma cells via proteolysis of E-cadherin. Int J Oncol 27:693–698PubMedGoogle Scholar
  18. 18.
    Johnson SK, Ramani VC, Hennings L, Haun RS (2007) Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin. Cancer 109:1811–1820PubMedCrossRefGoogle Scholar
  19. 19.
    Covington MD, Burghardt RC, Parrish AR et al (2006) Ischemia-induced cleavage of cadherins in NRK cells requires MT1-MMP (MMP-14). Am J Physiol Renal Physiol 290:F43–F51PubMedCrossRefGoogle Scholar
  20. 20.
    Maretzky T, Reiss K, Ludwig A et al (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proc Natl Acad Sci USA 102:9182–9187PubMedCrossRefGoogle Scholar
  21. 21.
    Steinhusen U, Weiske J, Badock V et al (2001) Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 276:4972–4980PubMedCrossRefGoogle Scholar
  22. 22.
    Rashid MG, Sanda MG, Vallorosi CJ et al (2001) Posttranslational truncation and inactivation of human E-cadherin distinguishes prostate cancer from matched normal prostate. Cancer Res 61:489–492PubMedGoogle Scholar
  23. 23.
    Rios-Doria J, Day KC, Kuefer R et al (2003) The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J Biol Chem 278:1372–1379PubMedCrossRefGoogle Scholar
  24. 24.
    Reiss K, Maretzky T, Ludwig A et al (2005) ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and β-catenin nuclear signalling. EMBO J 24:742–752PubMedCrossRefGoogle Scholar
  25. 25.
    Monea S, Jordan BA, Srivastava S et al (2006) Membrane localization of membrane type 5 matrix metalloproteinase by AMPA receptor binding protein and cleavage of cadherins. J Neurosci 26:2300–2312PubMedCrossRefGoogle Scholar
  26. 26.
    Uemura K, Kihara T, Kuzuya A et al (2006) Characterization of sequential N-cadherin cleavage by ADAM10 and PS1. Neurosci Lett 402:278–283PubMedCrossRefGoogle Scholar
  27. 27.
    Paradies NE, Grunwald GB (1993) Purification and characterization of NCAD90, a soluble endogenous form of N-cadherin, which is generated by proteolysis during retinal development and retains adhesive and neurite-promoting function. J Neurosci Res 36:33–45PubMedCrossRefGoogle Scholar
  28. 28.
    Marambaud P, Wen PH, Dutt A et al (2003) A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114:635–645PubMedCrossRefGoogle Scholar
  29. 29.
    Shoval I, Ludwig A, Kalcheim C (2007) Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development 134:491–501PubMedCrossRefGoogle Scholar
  30. 30.
    Tai C-Y, Mysore SP, Chiu C, Schuman EM (2007) Activity-regulated N-cadherin endocytosis. Neuron 54:771–785PubMedCrossRefGoogle Scholar
  31. 31.
    Uemura K, Kuzuya A, Aoyagi N et al (2007) Amyloid β inhibits ectodomain shedding of N-cadherin via down-regulation of cell-surface NMDA receptor. Neuroscience 145:5–10PubMedCrossRefGoogle Scholar
  32. 32.
    Noë V, Willems J, Vandekerckhove J et al (1999) Inhibition of adhesion and induction of epithelial cell invasion by HAV-containing E-cadherin-specific peptides. J Cell Sci 112:127–135PubMedGoogle Scholar
  33. 33.
    Nawrocki-Raby B, Gilles C, Polette M et al (2003) Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int J Cancer 105:790–795PubMedCrossRefGoogle Scholar
  34. 34.
    Lee KH, Choi EY, Hyun MS et al (2007) Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells. Eur Surg Res 39:208–215PubMedCrossRefGoogle Scholar
  35. 35.
    Derycke L, Morbidelli L, Ziche M et al (2006) Soluble N-cadherin fragment promotes angiogenesis. Clin Exp Metastasis 23:187–201PubMedCrossRefGoogle Scholar
  36. 36.
    De Wever O, Westbroek W, Verloes A et al (2004) Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-β or wounding. J Cell Sci 117:4691–4703PubMedCrossRefGoogle Scholar
  37. 37.
    Utton MA, Eickholt B, Howell FV et al (2001) Soluble N-cadherin stimulates fibroblast growth factor receptor dependent neurite outgrowth and N-cadherin and the fibroblast growth factor receptor co-cluster in cells. J Neurochem 76:1421–1430PubMedCrossRefGoogle Scholar
  38. 38.
    Cifuentes-Diaz C, Nicolet M, Goudou D et al (1994) N-cadherin expression in developing, adult and denervated chicken neuromuscular system: accumulations at both the neuromuscular junction and the node of Ranvier. Development 120:1–11PubMedGoogle Scholar
  39. 39.
    Whittard JD, Craig SE, Mould AP et al (2002) E-cadherin is a ligand for integrin α2ß1. Matrix Biol 21:525–532PubMedCrossRefGoogle Scholar
  40. 40.
    De Wever O, Mareel M (2006) Pro-invasive molecular cross-signaling between cancer cells and myofibroblasts. In: Chaponnier C, Desmoulière A, Gabbiani G (eds) Tissue Repair, Contraction and the Myofibroblast, Chapt. 8. and Springer Science+Business Media, pp 74–87Google Scholar
  41. 41.
    De Wever O, Nguyen Q-D, Van Hoorde L et al (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18:1016–1018PubMedGoogle Scholar
  42. 42.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174PubMedCrossRefGoogle Scholar
  43. 43.
    De Wever O, Mareel M (2002) Role of myofibroblasts at the invasion front. Biol Chem 383:55–67PubMedCrossRefGoogle Scholar
  44. 44.
    Poulsom R, Pignatelli M, Stetler-Stevenson WG et al (1992) Stromal expression of 72 kDa type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am J Pathol 141:389–396PubMedGoogle Scholar
  45. 45.
    Pyke C, Ralfkiaer E, Tryggvason K, Danø K (1993) Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am J Pathol 142:359–365PubMedGoogle Scholar
  46. 46.
    Shintani Y, Wheelock MJ, Johnson KR (2006) Phosphoinositide-3 kinase-Rac1-c-Jun NH2-terminal kinase signaling mediates collagen I-induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells. Mol Biol Cell 17:2963–2975PubMedCrossRefGoogle Scholar
  47. 47.
    Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR (2006) Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 66:11745–11753PubMedCrossRefGoogle Scholar
  48. 48.
    Koenig A, Mueller C, Hasel C et al (2006) Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res 66:4662–4671PubMedCrossRefGoogle Scholar
  49. 49.
    Navarro P, Ruco L, Dejana E (1998) Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol 140:1475–1484PubMedCrossRefGoogle Scholar
  50. 50.
    Gerhardt H, Wolburg H, Redies C (2000) N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218:472–479PubMedCrossRefGoogle Scholar
  51. 51.
    Luo Y, Radice GL (2005) N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. J Cell Biol 169:29–34PubMedCrossRefGoogle Scholar
  52. 52.
    Carmeliet P, Lampugnani M-G, Moons L et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157PubMedCrossRefGoogle Scholar
  53. 53.
    Paik J-H, Skoura A, Chae S-S et al (2004) Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 18:2392–2403PubMedCrossRefGoogle Scholar
  54. 54.
    Harnden P, Shelley MD, Clements H et al (2007) The prognostic significance of perineural invasion in prostatic cancer biopsies. A systematic review. Cancer 109:13–24PubMedCrossRefGoogle Scholar
  55. 55.
    Ayala GE, Wheeler TM, Shine HD et al (2001) In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 49:213–223PubMedCrossRefGoogle Scholar
  56. 56.
    Ayala GE, Dai H, Ittmann M et al (2004) Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res 64:6082–6090PubMedCrossRefGoogle Scholar
  57. 57.
    Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455PubMedCrossRefGoogle Scholar
  58. 58.
    Tran NL, Adams DG, Vaillancourt RR, Heimark RL (2002) Signal Transduction from N-cadherin Increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J Biol Chem 277:32905–32914PubMedCrossRefGoogle Scholar
  59. 59.
    Ayala GE, Dai H, Tahir SA et al (2006) Stromal antiapoptotic paracrine loop in perineural invasion of prostatic carcinoma. Cancer Res 66:5159–5164PubMedCrossRefGoogle Scholar
  60. 60.
    Suyama K, Shapiro I, Guttman M, Hazan RB (2002) A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2:301–314PubMedCrossRefGoogle Scholar
  61. 61.
    Weeraratna AT, Jiang Y, Hostetter G et al (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288PubMedCrossRefGoogle Scholar
  62. 62.
    Rodrigues S, De Wever O, Bruyneel E et al (2007) Opposing roles of netrin-1 and the dependence receptor DCC in cancer cell invasion, tumor growth and metastasis. Oncogene 26:5615–5625PubMedCrossRefGoogle Scholar
  63. 63.
    Giordano S, Corso S, Conrotto P et al (2002) The Semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4:720–724PubMedCrossRefGoogle Scholar
  64. 64.
    Cornell RJ, Rowley D, Wheeler T et al (2003) Neuroepithelial interactions in prostate cancer are enhanced in the presence ofprostatic stroma. Urology 61:870–875PubMedCrossRefGoogle Scholar
  65. 65.
    Dalton WS, Friend SH (2006) Cancer biomarkers - an invitation to the table. Science 312:1165–1168PubMedCrossRefGoogle Scholar
  66. 66.
    Joensuu H, Anttonen A, Eriksson M et al (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62:5210–5217PubMedGoogle Scholar
  67. 67.
    Seidel C, Sundan A, Hjorth M et al (2000) Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95:388–392PubMedGoogle Scholar
  68. 68.
    Tartour E, Mosseri V, Jouffroy T et al (2001) Serum soluble interleukin-2 receptor concentrations as an independent prognostic marker in head and neck cancer. Lancet 357:1263–1264PubMedCrossRefGoogle Scholar
  69. 69.
    Witkowska AM (2005) On the role of sIL-2R measurements in rheumatoid arthritis and cancers. Mediators Inflamm 2005:121–130PubMedCrossRefGoogle Scholar
  70. 70.
    Chan AOO, Lam SK, Chu KM et al (2001) Soluble E-cadherin is a valid prognostic marker in gastric carcinoma. Gut 48:808–811PubMedCrossRefGoogle Scholar
  71. 71.
    Velikova G, Banks RE, Gearing A et al (1997) Circulating soluble adhesion molecules E-cadherin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in patients with gastric cancer. Br J Cancer 76:1398–1404PubMedGoogle Scholar
  72. 72.
    Gofuku J, Shiozaki H, Doki Y et al (1998) Characterization of soluble E-cadherin as a disease marker in gastric cancer patients. Br J Cancer 78:1095–1101PubMedGoogle Scholar
  73. 73.
    Chan AO-O, Chu K-M, Lam S-K et al (2003) Soluble E-cadherin is an independent pretherapeutic factor for long-term survival in gastric cancer. J Clin Oncol 21:2288–2293PubMedCrossRefGoogle Scholar
  74. 74.
    Juhasz M, Ebert MPA, Schulz HU et al (2003) Dual role of serum soluble E-cadherin as a biological marker of metastatic development in gastric cancer. Scand J Gastroenterol 38:850–855PubMedCrossRefGoogle Scholar
  75. 75.
    Chan AOO, Chu K-M, Lam SK et al (2005) Early prediction of tumor recurrence after curative resection of gastric carcinoma by measuring soluble E-cadherin. Cancer 104:740–746PubMedCrossRefGoogle Scholar
  76. 76.
    Griffiths TRL, Brotherick I, Bishop RI et al (1996) Cell adhesion molecules in bladder cancer: soluble serum E-cadherin correlates with predictors of recurrence. Br J Cancer 74:579–584PubMedGoogle Scholar
  77. 77.
    Durkan GC, Brotherick I, Mellon JK (1999) The impact of transurethral resection of bladder tumour on serum levels of soluble E-cadherin. BJU Int 83:424–428PubMedCrossRefGoogle Scholar
  78. 78.
    Matsumoto K, Shariat SF, Casella R et al (2003) Preoperative plasma soluble E-cadherin predicts metastases to lymph nodes and prognosis in patients undergoing radical cystectomy. J Urol 170:2248–2252PubMedCrossRefGoogle Scholar
  79. 79.
    Kuefer R, Hofer MD, Gschwend JE et al (2003) The role of an 80 kDa fragment of E-cadherin in the metastatic progression of prostate cancer. Clin Cancer Res 9:6447–6452PubMedGoogle Scholar
  80. 80.
    Kuefer R, Hofer MD, Zorn CSM et al (2005) Assessment of a fragment of e-cadherin as a serum biomarker with predictive value for prostate cancer. Br J Cancer 92:2018–2023PubMedCrossRefGoogle Scholar
  81. 81.
    Gadducci A, Ferdeghini M, Cosio S et al (1999) Preoperative serum E-cadherin assay in patients with ovarian carcinoma. Anticancer Res 19:769–772PubMedGoogle Scholar
  82. 82.
    Velikova G, Banks RE, Gearing A et al (1998) Serum concentrations of soluble adhesion molecules in patients with colorectal cancer. Br J Cancer 77:1857–1863PubMedGoogle Scholar
  83. 83.
    Wilmanns C, Grossmann J, Steinhauer S et al (2004) Soluble serum E-cadherin as a marker of tumour progression in colorectal cancer patients. Clin Exp Metastasis 21:75–78PubMedCrossRefGoogle Scholar
  84. 84.
    Shirahama S, Furukawa F, Wakita H, Takigawa M (1996) E- and P-cadherin expression in tumor tissues and soluble E-cadherin levels in sera of patients with skin cancer. J Dermatol Sci 13:30–36PubMedCrossRefGoogle Scholar
  85. 85.
    Billion K, Ibrahim H, Mauch C, Niessen CM (2006) Increased soluble E-cadherin in melanoma patients. Skin Pharmacol Physiol 19:65–70PubMedCrossRefGoogle Scholar
  86. 86.
    Charalabopoulos K, Gogali A, Dalavaga Y et al (2006) The clinical significance of soluble E-cadherin in nonsmall cell lung cancer. Exp Oncol 28:83–85PubMedGoogle Scholar
  87. 87.
    Banks RE, Porter WH, Whelan P et al (1995) Soluble forms of the adhesion molecule E-cadherin in urine. J Clin Pathol 48:179–180PubMedCrossRefGoogle Scholar
  88. 88.
    Protheroe AS, Banks RE, Mzimba M et al (1999) Urinary concentrations of the soluble adhesion molecule E-cadherin and total protein in patients with bladder cancer. Br J Cancer 80:273–278PubMedCrossRefGoogle Scholar
  89. 89.
    Daraï E, Bringuier A-F, Walker-Combrouze F et al (1998) Soluble adhesion molecules in serum and cyst fluid from patients with cystic tumours of the ovary. Hum Reprod 13:2831–2835PubMedCrossRefGoogle Scholar
  90. 90.
    Sundfeldt K, Ivarsson K, Rask K et al (2001) Higher levels of soluble E-cadherin in cyst fluid from malignant ovarian tumours than in benign cysts. Anticancer Res 21:65–70PubMedGoogle Scholar
  91. 91.
    Knudsen KA, Lin CY, Johnson KR et al (2000) Lack of correlation between serum levels of E- and P-cadherin fragments and the presence of breast cancer. Hum Pathol 31:961–965PubMedCrossRefGoogle Scholar
  92. 92.
    Sulkowska M, Famulski W, Wincewicz A et al (2006) Levels of VE-cadherin increase independently of VEGF in preoperative sera of patients with colorectal cancer. Tumori 92:67–71PubMedGoogle Scholar
  93. 93.
    Derycke L, De Wever O, Stove V et al (2006) Soluble N-cadherin in human biological fluids. Int J Cancer 119:2895–2900PubMedCrossRefGoogle Scholar
  94. 94.
    Pittard AJ, Banks RE, Galley HF, Webster NR (1996) Soluble E-cadherin concentrations in patients with systemic inflammatory response syndrome and multiorgan dysfunction syndrome. Br J Anaesth 76:629–631PubMedGoogle Scholar
  95. 95.
    Soler AP, Russo J, Russo IH, Knudsen KA (2002) Soluble fragment of P-cadherin adhesion protein found in human milk. J Cell Biochem 85:180–184PubMedCrossRefGoogle Scholar
  96. 96.
    De Paul AL, Bonaterra M, Soler AP et al (2005) Soluble P-cadherin found in human semen. J Androl 26:44–47PubMedGoogle Scholar
  97. 97.
    Soeki T, Tamura Y, Shinohara H et al (2004) Elevated concentration of soluble vascular endothelial cadherin is associated with coronary atherosclerosis. Circ J 68:1–5PubMedCrossRefGoogle Scholar
  98. 98.
    Lafky JM, Baron AT, Cora EM et al (2005) Serum soluble epidermal growth factor receptor concentrations decrease in postmenopausal metastatic breast cancer patients treated with letrozole. Cancer Res 65:3059–3062PubMedGoogle Scholar
  99. 99.
    Derycke LDM, Bracke ME (2004) N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol 48:463–476PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang B, Groffen J, Heisterkamp N (2007) Increased resistance to a farnesyltransferase inhibitor by N-cadherin expression in Bcr/Abl-P190 lymphoblastic leukemia cells. Leukemia 21:1189–1197PubMedCrossRefGoogle Scholar
  101. 101.
    Hulit J, Suyama K, Chung S et al (2007) N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res 67:3106–3116PubMedCrossRefGoogle Scholar
  102. 102.
    Williams E, Williams G, Gour BJ et al (2000) A novel family of cyclic peptide antagonists suggests that N-cadherin specificity is determined by amino acids that flank the HAV motif. J Biol Chem 275:4007–4012PubMedCrossRefGoogle Scholar
  103. 103.
    Williams G, Williams E-J, Doherty P (2002) Dimeric versions of two short N-cadherin binding motifs (HAVDI and INPISG) function as N-cadherin agonists. J Biol Chem 277:4361–4367PubMedCrossRefGoogle Scholar
  104. 104.
    Mariotti A, Perotti A, Sessa C, Rüegg C (2007) N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 16:451–465PubMedCrossRefGoogle Scholar
  105. 105.
    Tomita K, van Bokhoven A, van Leenders GJLH et al (2000) Cadherin switching in human prostate cancer progression. Cancer Res 60:3650–3654PubMedGoogle Scholar
  106. 106.
    Lee DM, Kiener HP, Agarwal SK et al (2007) Cadherin-11 in synovial lining formation and pathology in arthritis. Science 315:1006–1010PubMedCrossRefGoogle Scholar
  107. 107.
    Williams E-J, Williams G, Howell FV et al (2001) Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J Biol Chem 276:43879–43886PubMedCrossRefGoogle Scholar
  108. 108.
    Kim J-B, Islam S, Kim YJ et al (2000) N-Cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased motility. J Cell Biol 151:1193–1206PubMedCrossRefGoogle Scholar
  109. 109.
    D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085PubMedCrossRefGoogle Scholar
  110. 110.
    Thiele A, Thormann M, Hofmann H-J et al (2000) A possible role of N-cadherin in thalidomide teratogenicity. Life Sci 67:457–461PubMedCrossRefGoogle Scholar
  111. 111.
    Anderson KC (2007) Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp Hematol 35:155–162PubMedCrossRefGoogle Scholar
  112. 112.
    Gupta D, Treon SP, Shima Y et al (2001) Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15:1950–1961PubMedGoogle Scholar
  113. 113.
    Visentin B, Vekich JA, Sibbald BJ et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238PubMedCrossRefGoogle Scholar
  114. 114.
    Bagnato A, Rosanò L, Spinella F et al (2004) Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression. Cancer Res 64:1436–1443PubMedCrossRefGoogle Scholar
  115. 115.
    Yang Y-a, Dukhanina O, Tang B et al (2002) Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615PubMedGoogle Scholar
  116. 116.
    Muraoka RS, Dumont N, Ritter CA et al (2002) Blockade of TGF-ß inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559PubMedGoogle Scholar
  117. 117.
    Won J, Kim H, Park EJ et al (1999) Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor β receptor therapy. Cancer Res 59:1273–1277PubMedGoogle Scholar
  118. 118.
    Inman GJ, Nicolás FJ, Callahan JF et al (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74PubMedCrossRefGoogle Scholar
  119. 119.
    Laping NJ, Grygielko E, Mathur A et al (2002) Inhibition of transforming growth factor (TGF)-ß1-induced extracellular matrix with a novel inhibitor of the TGF-ß type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64PubMedCrossRefGoogle Scholar
  120. 120.
    Hjelmeland MD, Hjelmeland AB, Sathornsumetee S et al (2004) SB-431542, a small molecule transforming growth factor-β-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 3:737–745PubMedGoogle Scholar
  121. 121.
    Matsuyama S, Iwadate M, Kondo M et al (2003) SB-431542 and Gleevec inhibit transforming growth factor-β-induced proliferation of human osteosarcoma cells. Cancer Res 63:7791–7798PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Olivier De Wever
    • 1
  • Lara Derycke
    • 1
  • An Hendrix
    • 2
  • Gert De Meerleer
    • 3
  • François Godeau
    • 4
  • Herman Depypere
    • 5
  • Marc Bracke
    • 1
  1. 1.Laboratory of Experimental Cancer ResearchUniversity Hospital GhentGentBelgium
  2. 2.Department of Medical OncologyUniversity Hospital GhentGentBelgium
  3. 3.Department of Radiotherapy and Nuclear MedicineUniversity Hospital GhentGentBelgium
  4. 4.INSERM U515, Hôpital Saint-AntoineParisFrance
  5. 5.Department of GynaecologyUniversity Hospital GhentGentBelgium

Personalised recommendations