Advertisement

Clinical & Experimental Metastasis

, Volume 24, Issue 3, pp 201–209 | Cite as

Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell–cell adhesion of colorectal cancer cells

  • Cary B. Aarons
  • Olga Bajenova
  • Charles Andrews
  • Stanley Heydrick
  • Kristen N. Bushell
  • Karen L. Reed
  • Peter Thomas
  • James M. Becker
  • Arthur F. Stucchi
Research Paper

Abstract

The liver is the most common site for metastasis by colorectal cancer, and numerous studies have shown a relationship between serum carcinoembryonic antigen (CEA) levels and metastasis to this site. CEA activates hepatic macrophages or Kupffer cells via binding to the CEA receptor (CEA-R), which results in the production of cytokines and the up-regulation of endothelial adhesion molecules, both of which are implicated in hepatic metastasis. Since tissue macrophages implicated in the metastatic process can often be difficult to isolate, the aim of this study was to develop an in vitro model system to study the complex mechanisms of CEA-induced macrophage activation and metastasis. Undifferentiated, human monocytic THP-1 (U-THP) cells were differentiated (D-THP) to macrophages by exposure to 200 ng/ml phorbol myristate acetate (PMA) for 18 h. Immunohistochemistry showed two CEA-R isoforms present in both U- and D-THP cells. The receptors were localized primarily to the nucleus in U-THP cells, while a significant cell-surface presence was observed following PMA-differentiation. Incubation of D-THP-1 cells with CEA resulted in a significant increase in tumor necrosis factor-alpha (TNF-α) release over 24 h compared to untreated D-THP-1 or U-THP controls confirming the functionality of these cell surface receptors. U-THP cells were unresponsive to CEA. Attachment of HT-29 cells to human umbilical vein endothelial cells significantly increased at 1 h after incubation with both recombinant TNF-α and conditioned media from CEA stimulated D-THP cells by six and eightfold, respectively. This study establishes an in vitro system utilizing a human macrophage cell line expressing functional CEA-Rs to study activation and signaling mechanisms of CEA that facilitate tumor cell attachment to activated endothelial cells. Utilization of this in vitro system may lead to a more complete understanding of the expression and function of CEA-R and facilitate the design of anti-CEA-R therapeutic modalities that may significantly diminish the metastatic potential of CEA overexpressing colorectal tumors.

Keywords

Carcinoembryonic antigen Carcinoembryonic antigen receptors Colon cancer Metastasis THP-1 macrophages 

Notes

Acknowledgement

Supported by the Smithwlck Funds, Department of Surgery, Boston Medical Center and NIH grant CA74941 (PT).

References

  1. 1.
    Wahl LM, Kleinman HK (1998) Tumor-associated macrophages as targets for cancer therapy. J Natl Cancer Inst 90(21):1583–1584PubMedCrossRefGoogle Scholar
  2. 2.
    Banaei-Bouchareb L, Gouon-Evans V, Samara-Boustani D et al (2004) Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J Leukoc Biol 76(2):359–367PubMedCrossRefGoogle Scholar
  3. 3.
    Knowles H, Leek R, Harris AL (2004) Macrophage infiltration and angiogenesis in human malignancy. Novartis Found Symp 256:189–200; Discussion 200–284, 259–269PubMedGoogle Scholar
  4. 4.
    Ohno S, Suzuki N, Ohno Y et al (2003) Tumor-associated macrophages: foe or accomplice of tumors? Anticancer Res 23(6a):4395–4409PubMedGoogle Scholar
  5. 5.
    Oosterling SJ, van der Bij GJ, Meijer GA et al (2005) Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol 207(2):147–155PubMedCrossRefGoogle Scholar
  6. 6.
    Parker GA, Picut CA (2005) Liver immunobiology. Toxicol Pathol 33(1):52–62PubMedCrossRefGoogle Scholar
  7. 7.
    Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904PubMedCrossRefGoogle Scholar
  8. 8.
    Weiss L, Grundmann E, Torhorst J et al (1986) Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J Pathol 150(3):195–203PubMedCrossRefGoogle Scholar
  9. 9.
    Bayon LG, Izquierdo MA, Sirovich I et al (1996) Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology 23(5):1224–1231PubMedCrossRefGoogle Scholar
  10. 10.
    Hostetter RB, Augustus LB, Mankarious R et al (1990) Carcinoembryonic antigen as a selective enhancer of colorectal cancer metastasis. J Natl Cancer Inst 82(5):380–385PubMedCrossRefGoogle Scholar
  11. 11.
    Thomas P, Gangopadhyay A, Steele G Jr et al (1995) The effect of transfection of the CEA gene on the metastatic behavior of the human colorectal cancer cell line MIP-101. Cancer Lett 92(1):59–66PubMedCrossRefGoogle Scholar
  12. 12.
    Stanners CP (1998) Cell adhesion and communication mediated by the CEA family: basic and clinical perspectives, vol xvii. Harwood Academic Publishers, Amsterdam, p 306Google Scholar
  13. 13.
    Minami S, Furui J, Kanematsu T (2001) Role of carcinoembryonic antigen in the progression of colon cancer cells that express carbohydrate antigen. Cancer Res 61(6):2732–2735PubMedGoogle Scholar
  14. 14.
    Thomas P, Toth CA (1990) Carcinoembryonic antigen binding to Kupffer cells is via a peptide located at the junction of the N-terminal and first loop domains. Biochem Biophys Res Commun 170(1):391–396PubMedCrossRefGoogle Scholar
  15. 15.
    Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9(2):67–81PubMedCrossRefGoogle Scholar
  16. 16.
    Marx J (2004) Cancer research. Inflammation and cancer: the link grows stronger. Science 306(5698):966–968PubMedCrossRefGoogle Scholar
  17. 17.
    Jessup JM, Giavazzi R, Campbell D et al (1988) Growth potential of human colorectal carcinomas in nude mice: association with the preoperative serum concentration of carcinoembryonic antigen in patients. Cancer Res 48(6):1689–1692PubMedGoogle Scholar
  18. 18.
    Toth CA, Thomas P, Broitman SA et al (1985) Receptor-mediated endocytosis of carcinoembryonic antigen by rat liver Kupffer cells. Cancer Res 45(1):392–397PubMedGoogle Scholar
  19. 19.
    Bajenova OV, Zimmer R, Stolper E et al (2001) Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells. J Biol Chem 276(33):31067–31073PubMedCrossRefGoogle Scholar
  20. 20.
    Bajenova O, Stolper E, Gapon S et al (2003) Surface expression of heterogeneous nuclear RNA binding protein M4 on Kupffer cell relates to its function as a carcinoembryonic antigen receptor. Exp Cell Res 291(1):228–241PubMedCrossRefGoogle Scholar
  21. 21.
    Laguinge L, Bajenova O, Bowden E et al (2005) Surface expression and CEA binding of hnRNP M4 protein in HT29 colon cancer cells. Anticancer Res 25(1A):23–31PubMedGoogle Scholar
  22. 22.
    Gangopadhyay A, Bajenova O, Kelly TM et al (1996) Carcinoembryonic antigen induces cytokine expression in Kuppfer cells: implications for hepatic metastasis from colorectal cancer. Cancer Res 56(20):4805–4810PubMedGoogle Scholar
  23. 23.
    Jessup JM, Laguinge L, Lin S et al (2004) Carcinoembryonic antigen induction of IL-10 and IL-6 inhibits hepatic ischemic/reperfusion injury to colorectal carcinoma cells. Int J Cancer 111(3):332–337PubMedCrossRefGoogle Scholar
  24. 24.
    Nelson H, Ramsey PS, Donohue JH et al (1994) Cell adhesion molecule expression within the microvasculature of human colorectal malignancies. Clin Immunol Immunopathol 72(1):129–136PubMedCrossRefGoogle Scholar
  25. 25.
    Brodt P, Fallavollita L, Bresalier RS et al (1997) Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer 71(4):612–619PubMedCrossRefGoogle Scholar
  26. 26.
    Laferriere J, Houle F, Taher MM et al (2001) Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. J Biol Chem 276(36):33762–33772PubMedCrossRefGoogle Scholar
  27. 27.
    Hostetter RB, Campbell DE, Chi KF et al (1990) Carcinoembryonic antigen enhances metastatic potential of human colorectal carcinoma. Arch Surg 125(3):300–304PubMedGoogle Scholar
  28. 28.
    Toth CA, Thomas P, Broitman SA et al (1982) A new Kupffer cell receptor mediating plasma clearance of carcinoembryonic antigen by the rat. Biochem J 204(2):377–381PubMedGoogle Scholar
  29. 29.
    Shiratsuch H, Basson MD (2005) Differential regulation of monocyte/macrophage cytokine production by pressure. Am J Surg 190(5):757–762PubMedCrossRefGoogle Scholar
  30. 30.
    Foreman KE, Vaporciyan AA, Bonish BK et al (1994) C5a-induced expression of P-selectin in endothelial cells. J Clin Invest 94(3):1147–1155PubMedCrossRefGoogle Scholar
  31. 31.
    Gupta B, Ghosh B (1999) Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilical vein endothelial cells. Int J Immunopharmacol 21(11):745–757PubMedCrossRefGoogle Scholar
  32. 32.
    Madan B, Singh I, Kumar A et al (2002) Xanthones as inhibitors of microsomal lipid peroxidation and TNF-alpha induced ICAM-1 expression on human umbilical vein endothelial cells (HUVECs). Bioorg Med Chem 10(11):3431–3436PubMedCrossRefGoogle Scholar
  33. 33.
    Sasakawa T, Sasakawa Y, Masunaga T et al (2005) FK506 suppresses E-selectin, ICAM-1 and VCAM-1 expression on vascular endothelial cells by inhibiting tumor necrosis factor alpha secretion from peripheral blood mononuclear cells. Cytokine 29(2):67–71PubMedCrossRefGoogle Scholar
  34. 34.
    Hiscox S, Jiang WG (1997) Quantification of tumour cell-endothelial cell attachment by 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine (DiI). Cancer Lett 112(2):209–217PubMedCrossRefGoogle Scholar
  35. 35.
    Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56(2):106–130PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Cary B. Aarons
    • 1
  • Olga Bajenova
    • 4
  • Charles Andrews
    • 2
  • Stanley Heydrick
    • 1
  • Kristen N. Bushell
    • 3
  • Karen L. Reed
    • 1
  • Peter Thomas
    • 4
  • James M. Becker
    • 1
  • Arthur F. Stucchi
    • 1
  1. 1.Department of SurgeryBoston University School of MedicineBostonUSA
  2. 2.Department of PathologyBoston University School of MedicineBostonUSA
  3. 3.Department of PharmacologyBoston University School of MedicineBostonUSA
  4. 4.Department of SurgeryCreighton University Medical SchoolOmahaUSA

Personalised recommendations