Clinical & Experimental Metastasis

, Volume 23, Issue 5–6, pp 249–258 | Cite as

Naturally occurring resistance of bone marrow mononuclear and metastatic cancer cells to anticancer agents

  • Christina Richard
  • Jonathan Yau
  • John P. H. Th’ng
  • Wilhelmina C. M. Duivenvoorden
Original Paper


Numerous cancer patients fail standard chemotherapy or develop resistance to chemotherapy during the course of treatment. The purpose of this study is to elucidate the overall response of cells obtained from cancer patients and from normal individuals to chemotherapeutic agents. We analysed the chemosensitivity of cancer cells derived from bone marrow and from pleural effusions or ascites fluids from patients with different cancers. Chemosensitivity to doxorubicin, cisplatin and paclitaxel was determined using the MTT assay. We also determined the response of bone marrow mononuclear (BMMN) cells. There was a wide range of responses to chemotherapy drugs in samples from different individuals. This was observed in cells derived from bone marrow and from ascites or pleural fluids. Large variations were also observed among morphologically normal BMMN cells and metastatic cancer cells from chemo-naïve patients. Cancer cells can easily be collected from ascites or pleural fluids and reliably assayed for chemosensitivity. We describe here that inherent chemoresistance may be a reason for the lack of response to chemotherapy in some patients. We discuss the potential of using the determination of natural resistance to dictate the drugs to be employed for treatment.


Chemotherapy Resistance Cytotoxicity Ascites Bone marrow 



This research was funded by grants provided by the Canadian Institutes for Health Research (to JPHT and WCMD). We are grateful for the contributions of Drs. Huan, Chan, Vergidis, Falkson, Anthes and Dhaliwal in obtaining the samples and for technical assistance of Dr. Shi in isolating the bone marrow mononuclear cells.


  1. 1.
    Romond EH, Perez EA, Bryant J, et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684PubMedCrossRefGoogle Scholar
  2. 2.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672PubMedCrossRefGoogle Scholar
  3. 3.
    Buzdar AU, Singletary SE, Theriault RL, et al (1999) Prospective evaluation of paclitaxel versus combination chemotherapy with fluorouracil, doxorubicin, and cyclophosphamide as neoadjuvant therapy in patients with operable breast cancer. J Clin Oncol 17:3412–3417PubMedGoogle Scholar
  4. 4.
    Wachters FM, Van Putten JW, Kramer H, et al (2003) First-line gemcitabine with cisplatin or epirubicin in advanced non-small-cell lung cancer: a phase III trial. Br J Cancer 89:1192–1199PubMedCrossRefGoogle Scholar
  5. 5.
    Cancer Care Ontario (2006) Drug formulary. Chemotherapy regimens by disease site. Cancer Care Ontario, Toronto, ON, Canada, Scholar
  6. 6.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Method 65:55–63CrossRefGoogle Scholar
  7. 7.
    Fanning J, Biddle WC, Goldrosen M, et al (1990) Comparison of cisplatin and carboplatin cytotoxicity in human ovarian cancer cell lines using the MTT assay. Gynecol Oncol 39:119–122PubMedCrossRefGoogle Scholar
  8. 8.
    Campling BG, Pym J, Baker HM, et al (1991) Chemosensitivity testing of small cell lung cancer using the MTT assay. Br J Cancer 63:75–83PubMedGoogle Scholar
  9. 9.
    Nikkhah G, Tonn JC, Hoffmann O, et al (1992) The MTT assay for chemosensitivity testing of human tumors of the central nervous system. Part II: evaluation of patient- and drug-specific variables. J Neurooncol 13:13–24PubMedCrossRefGoogle Scholar
  10. 10.
    Yamaue H, Tanimura H, Noguchi K, et al (1992) Chemosensitivity testing of fresh human gastric cancer with highly purified tumour cells using the MTT assay. Br J Cancer 66:794–799PubMedGoogle Scholar
  11. 11.
    Taylor CG, Sargent JM, Elgie AW, et al (1998) The clinical relevance of chemosensitivity testing in ovarian cancer. Cancer Detect Prev 22:305–312PubMedCrossRefGoogle Scholar
  12. 12.
    Furukawa S (2004) In vitro chemosensitivity of hepatocellular carcinoma for hepatic arterial infusion chemotherapy using the MTT assay with the combinations of antitumor drugs. Kurume Med J 51:25–33PubMedGoogle Scholar
  13. 13.
    Richard C, Matthews D, Duivenvoorden W, et al (2005) Flavopiridol sensitivity of cancer cells isolated from ascites and pleural fluids. Clin Cancer Res 11:3523–3529PubMedCrossRefGoogle Scholar
  14. 14.
    Klumper E, Pieters R, Kaspers GJ, et al (1995) In vitro chemosensitivity assessed with the MTT assay in childhood acute non-lymphoblastic leukemia. Leukemia 9:1864–1869PubMedGoogle Scholar
  15. 15.
    Kawada K, Yonei T, Ueoka H, et al (2002) Comparison of chemosensitivity tests: clonogenic assay versus MTT assay. Acta Med Okayama 56:129–134PubMedGoogle Scholar
  16. 16.
    Taylor CG, Sargent JM, Elgie AW, et al (2001) Chemosensitivity testing predicts survival in ovarian cancer. Eur J Gynaecol Oncol 22:278–282PubMedGoogle Scholar
  17. 17.
    Knight LA, Di Nicolantonio F, Whitehouse P, et al (2004) The in vitro effect of gefitinib (‘Iressa’) alone and in combination with cytotoxic chemotherapy on human solid tumours. BMC Cancer 4:83PubMedCrossRefGoogle Scholar
  18. 18.
    Silber R, Degar B, Costin D, et al (1994) Chemosensitivity of lymphocytes from patients with B-cell chronic lymphocytic leukemia to chlorambucil, fludarabine, and camptothecin analogs. Blood 84:3440–3446PubMedGoogle Scholar
  19. 19.
    Georgiadis MS, Russell EK, Gazdar AF, et al (1997) Paclitaxel cytotoxicity against human lung cancer cell lines increases with prolonged exposure durations. Clin Cancer Res 3:449–454PubMedGoogle Scholar
  20. 20.
    Gonzalez I, Andreu EJ, Panizo A, et al (2004) Imatinib inhibits proliferation of Ewing tumor cells mediated by the stem cell factor/KIT receptor pathway, and sensitizes cells to vincristine and doxorubicin-induced apoptosis. Clin Cancer Res 10:751–761PubMedCrossRefGoogle Scholar
  21. 21.
    Abuharbeid S, Apel J, Zugmaier G, et al (2005) Inhibition of HER-2 by three independent targeting strategies increases paclitaxel resistance of SKOV-3 ovarian carcinoma cells. Naunyn Schmiedebergs Arch Pharmacol 371:141–151PubMedCrossRefGoogle Scholar
  22. 22.
    Donaldson KL, Goolsby GL, Wahl AF (1994) Cytotoxicity of the anticancer agents cisplatin and taxol during cell proliferation and the cell cycle. Int J Cancer 57:847–855PubMedGoogle Scholar
  23. 23.
    Botling J, Liminga G, Larsson R, et al (1994) Development of vincristine resistance and increased sensitivity to cyclosporin A and verapamil in the human U-937 lymphoma cell line without overexpression of the 170-kDa P-glycoprotein. Int J Cancer 58:269–274PubMedGoogle Scholar
  24. 24.
    Parekh H, Wiesen K, Simpkins H (1997) Acquisition of taxol resistance via P-glycoprotein- and non-P-glycoprotein-mediated mechanisms in human ovarian carcinoma cells. Biochem Pharmacol 53:461–470PubMedCrossRefGoogle Scholar
  25. 25.
    Leslie EM, Deeley RG, Cole SP (2005) Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204:216–237PubMedCrossRefGoogle Scholar
  26. 26.
    Viktorsson K, Lewensohn R, Zhivotovsky B (2005) Apoptotic pathways and therapy resistance in human malignancies. Adv Cancer Res 94:143–196PubMedGoogle Scholar
  27. 27.
    Gong SJ, Jin CJ, Rha SY, et al (2004) Growth inhibitory effects of trastuzumab and chemotherapeutic drugs in gastric cancer cell lines. Cancer Lett 214:215–224PubMedCrossRefGoogle Scholar
  28. 28.
    Greene RF, Collins JM, Jenkins JF, et al (1983) Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experiments and treatment protocols. Cancer Res 43:3417–3421PubMedGoogle Scholar
  29. 29.
    Kurihara N, Kubota T, Hoshiya Y, et al (1996) Pharmacokinetics of cis-diamminedichloroplatinum (II) given as low-dose and high-dose infusions. J Surg Oncol 62:135–138PubMedCrossRefGoogle Scholar
  30. 30.
    Maier-Lenz H, Hauns B, Haering B, et al (1997) Phase I study of paclitaxel administered as a 1-hour infusion: toxicity and pharmacokinetics. Semin Oncol 24:S19–16–S19–19Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Christina Richard
    • 1
  • Jonathan Yau
    • 2
  • John P. H. Th’ng
    • 1
    • 3
  • Wilhelmina C. M. Duivenvoorden
    • 1
    • 4
    • 5
  1. 1.Regional Cancer Care ProgrammeThunder Bay Regional Health Sciences CentreThunder BayCanada
  2. 2.Division of General Internal MedicineUniversity of CalgaryNWCanada
  3. 3.Medical Sciences DivisionNorthern Ontario School of MedicineThunder BayCanada
  4. 4.Department of Biology and ChemistryLakehead UniversityThunder BayCanada
  5. 5.Research DepartmentJuravinski Cancer CentreHamiltonCanada

Personalised recommendations