Alatalo JM, Little CJ, Jägerbrand AK, Molau U (2015) Vascular plant abundance and diversity in an alpine heath under observed and simulated global change. Sci Rep 5(1):10197. https://doi.org/10.1038/srep10197
Article
Google Scholar
Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518. https://doi.org/10.1038/nature14952
Article
Google Scholar
Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH et al (1999) Response patterns of tundra plant species to experimental warming: a meta-analysis of the International Tundra Experiment. Ecol Monogr 69(4):491–511. https://doi.org/10.2307/2657227
Article
Google Scholar
Baruah G, Molau U, Bai Y, Alatalo JM (2017) Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities. Sci Rep 7(1):2571. https://doi.org/10.1038/s41598-017-02595-2
Article
Google Scholar
Birks JHB (2019) Contributions of Quaternary botany to modern ecology and biogeography. Plant Ecol Divers 12:189–385. https://doi.org/10.1080/17550874.2019.1646831
Article
Google Scholar
Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PSA, Blach-Overgaard A, Blok D, Cornelissen JHC et al (2018) Plant functional trait change across a warming tundra biome. Nature 562(7725):57–62. https://doi.org/10.1038/s41586-018-0563-7
Article
Google Scholar
Boscutti F, Casolo V, Beraldo P, Braidot E, Zancani M, Rixen C (2018) Shrub growth and plant diversity along an elevation gradient: evidence of indirect effects of climate on alpine ecosystems. PLoS One 13:e0196653. https://doi.org/10.1371/journal.pone.0196653
Article
Google Scholar
Capers RS, Stone AD (2011) After 33 years, trees more frequent and shrubs more abundant in northeast U.S. Arct Antarct Alp Res 43(4):495–502. https://doi.org/10.1657/1938-4246-43.4.495
Article
Google Scholar
Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8(4):e1000357. https://doi.org/10.1371/journal.pbio.1000357
Article
Google Scholar
Darling ES, Côté IM (2008) Quantifying the evidence for ecological synergies. Ecol Lett 11(12):1278–1286. https://doi.org/10.1111/j.1461-0248.2008.01243.x
Article
Google Scholar
Day TA, Ruhland CT, Strauss SL, PARK JH, Krieg ML, Krna MA, Bryant DM (2009) Response of plants and the dominant microarthropod, Cryptopygus antarcticus, to warming and contrasting precipitation regimes in Antarctic tundra. Glob Chang Biol 15(7):1640–1651. https://doi.org/10.1111/j.1365-2486.2009.01919.x
Article
Google Scholar
Dial RJ, Scott Smeltz T, Sullivan PF, Rinas CL, Timm K, Geck JE et al (2016) Shrubline but not treeline advance matches climate velocity in montane ecosystems of south-central Alaska. Glob Chang Biol 22(5):1841–1856. https://doi.org/10.1111/gcb.13207
Article
Google Scholar
Dunne JA, Harte J, Taylor KJ (2003) Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecol Monogr 73(1):69–86. https://doi.org/10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2
Article
Google Scholar
Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV et al (2012a) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15(2):164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x
Article
Google Scholar
Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ et al (2012b) Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim 2(6):453–457. https://doi.org/10.1038/nclimate1465
Article
Google Scholar
Flombaum P, Yahdjian L, Sala OE (2017) Global-change drivers of ecosystem functioning modulated by natural variability and saturating responses. Glob Chang Biol 23(2):503–511. https://doi.org/10.1111/gcb.13441
Article
Google Scholar
Fu G, Shen ZX, Sun W, Zhong ZM, Zhang XZ, Zhou YT (2015) A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan plateau. J Plant Growth Regul 34(1):57–65. https://doi.org/10.1007/s00344-014-9442-0
Article
Google Scholar
Gallagher RV, Hughes L, Leishman MR (2009) Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Aus J Bot 57(1):1–9. https://doi.org/10.1071/BT08051
Article
Google Scholar
Gardes M, Dahlberg A (1996) Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol 133:147–157. https://doi.org/10.1111/j.1469-8137.1996.tb04350.x
Article
Google Scholar
Ghalambor CK, McKAY JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407. https://doi.org/10.1111/j.1365-2435.2007.01283.x
Article
Google Scholar
Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Alonso JL, Coldea G, Dick J, Erschbamer B, Kazakis G, Krajči J (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim 2:111–115
Article
Google Scholar
Grabherr G, Gottfried M, Pauli H (2010) Climate change impacts in alpine environments. Geogr Compass 4(8):1133–1153. https://doi.org/10.1111/j.1749-8198.2010.00356.x
Article
Google Scholar
Guittar J, Goldberg D, Klanderud K, Telford RJ, Vandvik V (2016) Can trait patterns along gradients predict plant community responses to climate change? Ecology 97:2791–2801. https://doi.org/10.1002/ecy.1500
Article
Google Scholar
Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are Treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12(10):1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x
Article
Google Scholar
Harte J, Saleska SR, Levy C (2015) Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate-soil carbon feedback. Glob Chang Biol 21(6):2349–2356. https://doi.org/10.1111/gcb.12831
Article
Google Scholar
Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, San Diego
Google Scholar
Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80(4):1150–1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
Article
Google Scholar
Hollister RD, Webber PJ (2000) Biotic validation of small open-top chambers in a tundra ecosystem. Glob Chang Biol 6(7):835–842
Article
Google Scholar
Hollister RD, Webber PJ, Nelson FE, Tweedie CE (2006) Soil thaw and temperature response to air warming varies by plant community: results from an open-top chamber experiment in northern Alaska. Arct Antarct Alp Res 38(2):206–215
Article
Google Scholar
Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362. https://doi.org/10.1890/06-2128.1
Article
Google Scholar
IPCC-Intergovernmental Panel on Climate Change (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York
Google Scholar
Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8(9):1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x
Article
Google Scholar
Jurasinski G, Kreyling J (2007) Upward shift of alpine plants increases floristic similarity of mountain summits. J Veg Sci 18(5):711–718. https://doi.org/10.1111/j.1654-1103.2007.tb02585.x
Article
Google Scholar
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:170122. https://doi.org/10.1038/sdata.2017.122
Article
Google Scholar
Kiełtyk P (2018) Variation of vegetative and floral traits in the alpine plant Solidago minuta: evidence for local optimum along an elevational gradient. Alp Bot 128(1):47–57. https://doi.org/10.1007/s00035-017-0197-7
Article
Google Scholar
Klady RA, Henry GHR, Lemay V (2011) Changes in high arctic tundra plant reproduction in response to long-term experimental warming. Glob Chang Biol 17(4):1611–1624. https://doi.org/10.1111/j.1365-2486.2010.02319.x
Article
Google Scholar
Körner CH (1995) Alpine plant diversity: a global survey and functional interpretations. In: Arctic and alpine biodiversity: patterns, causes and ecosystem consequences 1995. Springer, Berlin, pp 45–62
Google Scholar
Körner C (2003) Alpine plant life, functional plant ecology of high mountain ecosystems. Springer, New York
Google Scholar
Körner C, Hiltbrunner E (2018) The 90 ways to describe plant temperature. Perspect Plant Ecol Syst 30(SI):16–21. https://doi.org/10.1016/j.ppees.2017.04.004
Article
Google Scholar
Kulonen A, Imboden RA, Rixen C, Maier SB, Wipf S (2018) Enough space in a warmer world? Microhabitat diversity and small-scale distribution of alpine plants on mountain summits. Divers Distrib 24(2):252–261. https://doi.org/10.1111/ddi.12673
Article
Google Scholar
Lande R (2014) Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment. J Evol Biol 27(5):866–875. https://doi.org/10.1111/jeb.12360
Article
Google Scholar
Lembrechts JJ, Lenoir J, Nuñez MA, Pauchard A, Geron C, Bussé G, Milbau A, Nijs I (2018) Microclimate variability in alpine ecosystems as stepping stones for non-native plant establishment above their current elevational limit. Ecography 41:900–909. https://doi.org/10.1111/ecog.03263
Article
Google Scholar
Lesica P, McCune B (2004) Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming. J Veg Sci 15:679–690. https://doi.org/10.1111/j.1654-1103.2004.tb02310.x
Article
Google Scholar
Li H, Yu K, Ratajczak Z, Nippert JB, Tondrob D, Xu D, Li W, Du G (2016) When variability outperforms the mean: trait plasticity predicts plant cover and biomass in an alpine wetland. Plant Soil 407(1–2):401–415. https://doi.org/10.1007/s11104-016-2898-x
Article
Google Scholar
Matesanz S, Gianoli E, Valladares F (2010) Global change and the evolution of phenotypic plasticity in plants. Ann N Y Acad Sci 1206:35–55. https://doi.org/10.1111/j.1749-6632.2010.05704.x
Article
Google Scholar
Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Levesque E, Molau U, Molgaard P, Parsons AN et al (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 3(S1):20–32. https://doi.org/10.1111/j.1365-2486.1997.gcb136.x
Article
Google Scholar
McVicar TR, Körner C (2013) On the use of elevation, altitude, and height in the ecological and climatological literature. Oecologia 171(2):335–337
Article
Google Scholar
Mondoni A, Rossi G, Orsenigo S, Probert RJ (2012) Climate warming could shift the timing of seed germination in alpine plants. Ann Bot 110(1):155–164. https://doi.org/10.1093/aob/mcs097
Article
Google Scholar
Myers-Smith I (2009) Shrub line advance in alpine tundra of the Kluane region: mechanisms of expansion and ecosystem impacts. Arctic 60(4):447–455. https://doi.org/10.14430/arctic208
Article
Google Scholar
Myers-Smith IH, Hik DS (2018) Climate warming as a driver of tundra shrubline advance. J Ecol 106(2):547–560. https://doi.org/10.1111/1365-2745.12817
Article
Google Scholar
Myers-Smith IH, Thomas HJD, Bjorkman AD (2019) Plant traits inform predictions of tundra responses to global change. New Phytol 221(4):1742–1748. https://doi.org/10.1111/nph.15592
Article
Google Scholar
Nakagawa S, Santos ESA (2012) Methodological issues and advances in biological meta-analysis. Evol Ecol 26:1253–1274. https://doi.org/10.1007/s10682-012-9555-5
Article
Google Scholar
Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP (2007) Exposure of Global Mountain systems to climate warming during the 21st century. Glob Environ Chang 17(3–4):420–428. https://doi.org/10.1016/j.gloenvcha.2006.11.007
Article
Google Scholar
Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, Leon-Gomez C, Dawson T, Martinez JJC, Castorena M et al (2018) Plant height and hydraulic vulnerability to drought and cold. PNAS 115(29):7551–7556. https://doi.org/10.1073/pnas.1721728115
Article
Google Scholar
Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. Glob Chang Biol 13:147–156
Article
Google Scholar
Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado R et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336(6079):353–355. https://doi.org/10.1126/science.1219033
Article
Google Scholar
Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42. https://doi.org/10.1038/nature01286
Article
Google Scholar
Peng F, Xue X, Xu M, You Q, Jian G, Ma SX (2017) Warming-induced shift towards forbs and grasses and its relation to the carbon sequestration in an alpine meadow. Environ Res Lett 12(4):044010. https://doi.org/10.1088/1748-9326/aa6508
Article
Google Scholar
Peng S, Kinlock NL, Gurevitch J, Peng S (2019) Correlation of native and exotic species richness: a global meta-analysis finds no invasion paradox across scales. Ecology 100(1):e02552. https://doi.org/10.1002/ecy.2552
Article
Google Scholar
Prevéy JS, Rixen C, Rüger N, Høye TT, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Ashton IW, Cannone N, Chisholm CL et al (2019) Warming shortens flowering seasons of tundra plant communities. Nat Ecol Evol 3(1):45–52. https://doi.org/10.1038/s41559-018-0745-6
Article
Google Scholar
Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981e993. https://doi.org/10.1111/j.1461-0248.2006.00950.x
Article
Google Scholar
Rosbakh S, Bernhardt-Römermann M, Poschlod P (2014) Elevation matters: contrasting effects of climate change on the vegetation development at different elevations in the Bavarian Alps. Alp Bot 124(2):143–154. https://doi.org/10.1007/s00035-014-0139-6
Article
Google Scholar
Rumpf SB, Hülber K, Klonner G, Moser D, Schütz M, Wessely J, Willner W, Zimmermann NE, Dullinger S (2018) Range dynamics of mountain plants decrease with elevation. Proc Natl Acad Sci U S A 115(8):1848–1853. https://doi.org/10.1073/pnas.1713936115
Article
Google Scholar
Rühland KM, Paterson AM, Keller W, Michelutti N, Smol JP (2013) Global warming triggers the loss of a key Arctic refugium. Proc R Soc Lond B Biol Sci 280:20131887. https://doi.org/10.1098/rspb.2013.1887
Article
Google Scholar
Scharnagl K, Johnson D, Ebert-May D (2019) Shrub expansion and alpine plant community change: 40-year record from Niwot Ridge, Colorado. Plant Ecol Divers:1–10. https://doi.org/10.1080/17550874.2019.1641757
Scherrer D, Körner C (2010) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416
Article
Google Scholar
Semenchuk PR, Elberling B, Cooper EJ (2013) Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecol Evol 3(8):2586–2599. https://doi.org/10.1002/ece3.648
Article
Google Scholar
Sierra-Almeida A, Cavieres LA (2010) Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes. Oecologia 163(1):267–276. https://doi.org/10.1007/s00442-010-1592-6
Article
Google Scholar
Sierra-Almeida A, Cavieres LA, Bravo LA (2018) Warmer temperatures affect the in situ freezing resistance of the Antarctic vascular plants. Front Plant Sci 9:1456
Article
Google Scholar
Smith JG, Sconiers W, Spasojevic MJ, Ashton IW, Suding KN (2012) Phenological changes in Alpine plants in response to increased snowpack, temperature, and nitrogen. Arct Antarct Alp Res 44(1):135–142. https://doi.org/10.1657/1938-4246-44.1.135
Article
Google Scholar
Steinbauer MJ, Grytnes JA, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556(7700):231–234. https://doi.org/10.1038/s41586-018-0005-6
Article
Google Scholar
Theurillat JP, Guisan A (2001) A potential impact of climate change on vegetation in the European Alps: a review. Clim Chang 50(1–2):77–109. https://doi.org/10.1023/A:1010632015572
Article
Google Scholar
Totland Ø (1999) Effects of temperature on performance and phenotypic selection on plant traits in alpine Ranunculus acris. Oecologia 120(2):242–251. https://doi.org/10.1007/s004420050854
Article
Google Scholar
Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11(12):1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x
Article
Google Scholar
Valladares F, Wright S, Lasso E, Kitajima K (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81:1925–1936. https://doi.org/10.2307/177282
Article
Google Scholar
Valladares F, Sanchez-Gomez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116
Article
Google Scholar
Venn S, Pickering C, Green K (2014) Spatial and temporal functional changes in alpine summit vegetation are driven by increases in shrubs and graminoids. AoB Plants 6:plu008. https://doi.org/10.1093/aobpla/plu008
Article
Google Scholar
Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB et al (2006) Plant community response to experimental warming across the tundra biome. PNAS 103(5):1342–1346. https://doi.org/10.1073/pnas.0503198103
Article
Google Scholar
Walther G, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548. https://doi.org/10.1111/j.1654-1103.2005.tb02394.x
Article
Google Scholar
Wilson SD, Nilsson C (2009) Arctic alpine vegetation change over 20 years. Glob Chang Biol 15(7):1676–1684. https://doi.org/10.1111/j.1365-2486.2009.01896.x
Article
Google Scholar
Windmaißer T, Reisch C (2013) Long-term study of an alpine grassland: local constancy in times of global change. Alp Bot 123(1):1–6. https://doi.org/10.1007/s00035-013-0112-9
Article
Google Scholar
Wipf S, Stöckli V, Herz K, Rixen C (2013) The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol Divers 6(3–4):447–455. https://doi.org/10.1080/17550874.2013.764943
Article
Google Scholar
Yue K, Fornara DA, Yang W, Peng Y, Peng C, Liu Z, Wu F (2017) Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecol Lett 20(5):663–672. https://doi.org/10.1111/ele.12767
Article
Google Scholar