AASC, n.d. American Association of State Climatologists, State Programs. Available at: https://www.stateclimate.org/state_programs. Accessed January 10, 2018
Bao J, Li X, Yu C (2015) The construction and validation of the heat vulnerability index, a review. Int J Environ Res Public Health 12:7220–7234
Article
Google Scholar
Carlsen H, Drebog K, Wikman-Svahn P (2013) Tailor-made scenario planning for local adaptation to climate change. Mitig Adapt Strateg Glob Change 18:1239–1255
Article
Google Scholar
Cheng L, AghaKouchak A (2014) Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Sci Rep 4:7093
Article
Google Scholar
Chuang W, Gober P (2015) Predicting hospitalization for heat-related illness at the census-tract level: accuracy of a generic heat vulnerability index in Phoenix, Arizona (USA). Environ Health Perspect 123:606–612
Google Scholar
Conlon K, Kintziger K, Jagger M, Stefanova L, Uejio C, Konrad C (2016) Working with climate projections to estimate disease burden: perspectives from public health. Int J Environ Res Public Health 13:1–23
Article
Google Scholar
Downing T, Butterfield R, Cohen S, Huq S, Moss R, Rahman A, Sokona Y, Stephen L. 2001. Vulnerability indices: climate change impacts and adaptation. UNEP Policy Series. Nairobi: United Nations Environment Programme
Ebi K, Hess J, Isaksen T (2016) Using uncertain climate and development information in health adaptation planning. Curr Environ Health Rep 3:99–105
Article
Google Scholar
Federal Emergency Management Agency (FEMA). (2001). Modernizing FEMA’s flood hazard mapping program. Available at: https://www.fema.gov/media-library-data/20130726-1545-20490-3997/frm_frpt.pdf. Accessed 31 March 2017
Federal Emergency Management Agency (FEMA). (2003). How to read a flood insurance rate map tutorial. Available at: https://www.fema.gov/media-library-data/20130726-1550-20490-1950/ot_firm.pdf. Accessed 31 March 2017
Flanagan S, Marvinney R, Johnston R, Yang Q, Zheng Y (2015) Dissemination of well water arsenic results to homeowners in Central Maine: influences on mitigation behavior and continued risks for exposure. Sci Total Environ 505:1282–1290
Article
Google Scholar
Harding K, Snyder P, Liess S (2003) Use of dynamical downscaling to improve the simulation of Central U.S. warm season precipitation in CMIP5 models. J Geophys Res Atmos 118:12,522–12,536
Article
Google Scholar
Hess J, Ebi K (2016) Iterative management of heat early warning systems in a changing climate. Ann N Y Acad Sci 1382:21–30
Article
Google Scholar
Homer C, Dewitz J, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold N, Wickham J, Megown K (2015) Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogramm Eng Remote Sens 81:345–354
Google Scholar
IPCC, 2007. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 976pp
Karl T, Melillo J, Peterson T (2009) Global climate change impacts in the United States. Cambridge University Press, Cambridge, MA
Google Scholar
Kreutzwiser R, de Loë R, Imgrund K, Conboy MJ, Simpson H, Plummer R (2011) Understanding stewardship behaviour: factors facilitating and constraining private water well stewardship. J Environ Manag 92:1104–1114
Article
Google Scholar
Kunkel K, Karl T, Easterling D, Redmond K, Young J, Yin X, Hennon P (2013) Probable maximum precipitation and climate change. Geophys Res Lett 40:1402–1408
Article
Google Scholar
Lockhart KM, King AM, Harter T (2013) Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J Contam Hydrol 151:140–154
Article
Google Scholar
Manangan A, Uejio C, Saha S, Schramm P, Marinucci G, Langford Brown C, Hess J, Luber G (2015) Assessing health vulnerability to climate change: a guide for health departments. Centers for Disease Control and Prevention, Atlanta
Google Scholar
McMichael A (2013) Impediments to comprehensive research on climate change and health. Int J Environ Res Public Health 10:6096–6105
Article
Google Scholar
Melillo J, Richmond T, Yohe G. Highlights of climate change impacts in the United States: the third national climate assessment. Available at: http://s3.amazonaws.com/nca2014/low/NCA3_Highlights_LowRes.pdf?download=1. Accessed March 31, 2017
Minnesota Department of Health (MDH). Drinking water by the Numbers, 2017a. Available at: http://www.health.state.mn.us/divs/eh/water/com/dwar/waternumbersfy17.pdf. Accessed January 10, 2018
Minnesota Department of Health (MDH). Nitrate-nitrogen risk ranking methods and results, 2017b. Available at: http://www.health.state.mn.us/divs/eh/water/swp/maps/no3risk.pdf. Accessed January 10, 2018
Minnesota Department of Natural Resources (MNDNR). Minnesota facts and figures. Available online: http://www.dnr.state.mn.us/faq/mnfacts/index.html. Accessed January 10, 2018
Minnesota Department of Natural Resources (MNDNR). Historic mega-rain events in Minnesota, 2018. Available online: http://www.dnr.state.mn.us/climate/summaries_and_publications/mega_rain_events.html. Accessed January 24, 2018
Minnesota Pollution Control Agency (MPCA). Groundwater protection recommendations report, 2016. Available at: https://www.pca.state.mn.us/sites/default/files/lrwq-gw-1sy16.pdf. Accessed March 31, 2017
Neiner J, Howze E, Greaney M (2004) Using scenario planning in public health: anticipating alternative futures. Health Promot Pract 5:69–79
Article
Google Scholar
Nolan B, Hitt K, Ruddy B (2002) Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States. Environ Sci Technol 36:2138–2145
Article
Google Scholar
Pastén-Zapata E, Ledesma-Ruiz R, Harter T, Ramírez AI, Mahlknecht J (2014) Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci Total Environ 470-471:855–864
Article
Google Scholar
Puckett L, Cowdery T (2002) Transport and fate of nitrate in a glacial outwash aquifer in relation to ground water age, land use practices, and redox processes. J Environ Qual 31:782–796
Article
Google Scholar
Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33
Article
Google Scholar
Rogan W, Brady M, Committee on Environmental Health, Committee on Infectious Diseases (2009) Drinking water from private wells and risks to children. Pediatrics 123:e1123–e1137
Article
Google Scholar
Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli P, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24:4368–4384
Article
Google Scholar
Shah P, Mallory M, Ando A, Guntenspergen G. 2016. Fine-resolution conservation planning with limited climate-change information. Conserv Biol 27
Sterk A, Schijven J, de Roda HA, de Nijs T (2016) Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water. Water Res 95:90–102
Article
Google Scholar
Tong S, Confalonieri U, Ebi K, Olsen J (2016) Managing and mitigating the health risks of climate change: calling for evidence-informed policy and action. Environ Health Perspect 124:A176–A179
Article
Google Scholar
United States Agency for International Development (USAID). Design and use of composite indices in assessments of climate change vulnerability and resilience. Available at: http://www.ciesin.org/documents/Design_Use_of_Composite_Indices.pdf. Accessed March 21, 2017
USDA National agricultural statistics service cropland data layer, Minnesota, 2015. Available at: https://gisdata.mn.gov/dataset/agri-cropland-data-layer-2015. Accessed March 31, 2017
Viglione A, Merz B, Viet Dung N, Parajka J, Nester T, Blöschl G (2016) Attribution of regional flood changes based on scaling fingerprints. Water Resour Res 52:5322–5340
Article
Google Scholar