Skip to main content

Spatiotemporal changes in the size and shape of heat waves over North America

Abstract

Heat waves are occurring more frequently across the globe and are likely to increase in intensity and duration under climate change. Much work has already been completed on attributing causes of observed heat waves and on modeling their future occurrence, but such efforts are often lacking in exploration of spatial relationships. Based on principles of landscape ecology, we utilized fragmentation metrics to examine the spatiotemporal changes in heat wave shape and occurrence across North America. This methodological approach enables us to examine area, shape, perimeter, and other key metrics. The application of these shape metrics to high-resolution historical (1950–2013) climate data reveals that the total number and spatial extent of heat waves are increasing over the continent, but at an individual heat wave patch level, they are becoming significantly smaller in extent and more complex in shape, indicating that heat waves have become a more widespread and fragmented phenomena.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anderson BG, Bell ML (2009) Weather-related mortality. Epidemiology 20:205–213. https://doi.org/10.1097/EDE.0b013e318190ee08

  2. Barriopedro D, Fischer EM, Luterbacher J et al (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332(80):220–224. https://doi.org/10.1126/science.1201224

    Article  Google Scholar 

  3. Bernard SM, Samet JM, Grambsch A et al (2001) The potential impacts of climate variability health effects in the United States. Environ Health Perspect 109:199–209. https://doi.org/10.2307/3435010

    Article  Google Scholar 

  4. Centers for Disease Control and Prevention (CDC) U (2006) Heat-related deaths--United States, 1999-2003. MMWR Morb Mortal Wkly Rep 55:796–798

    Google Scholar 

  5. Chen Y, Li Y (2017) An inter-comparison of three heat wave types in China during 1961–2010: observed basic features and linear trends. Sci Rep 7:45619. https://doi.org/10.1038/srep45619

    Article  Google Scholar 

  6. Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. https://doi.org/10.1038/nature03972

    Article  Google Scholar 

  7. Comrie A (2007) Climate change and human health. Geogr Compass 1:325–339. https://doi.org/10.1111/j.1749-8198.2007.00037.x

    Article  Google Scholar 

  8. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496. https://doi.org/10.1038/nclimate1452

    Google Scholar 

  9. Coumou D, Robinson A (2013) Historic and future increase in the global land area affected by monthly heat extremes. Environ Res Lett 8:34018. https://doi.org/10.1088/1748-9326/8/3/034018

    Article  Google Scholar 

  10. Curriero FC, Heiner KS, Samet JM et al (2002) Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol 155:80–87. https://doi.org/10.1093/aje/155.1.80

    Article  Google Scholar 

  11. DeGaetano AT, Allen RJ (2002) Trends in twentieth-century temperature extremes across the United States. J Clim 15:3188–3205. https://doi.org/10.1175/1520-0442(2002)015<3188:TITCTE>2.0.CO;2

    Article  Google Scholar 

  12. Diffenbaugh NS, Ashfaq M (2010) Intensification of hot extremes in the United States. Geophys Res Lett. https://doi.org/10.1029/2010GL043888

  13. Easterling DR, Meehl GA, Parmesan C et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. https://doi.org/10.1126/science.289.5487.2068

    Article  Google Scholar 

  14. Ebi KL (2008) Using health models to prepare for and cope with climate change. Clim Change 88(1):1–3

  15. Gaffen DJ, Ross RJ (1998) Increased summertime heat stress in the US. Nature 396:529–530. https://doi.org/10.1038/25030

    Article  Google Scholar 

  16. Grose MR, Risbey JS, Whetton PH (2017) Tracking regional temperature projections from the early 1990s in light of variations in regional warming, including “warming holes”. Clim Chang 140:307–322. https://doi.org/10.1007/s10584-016-1840-9

    Article  Google Scholar 

  17. Hajat S, Kovats RS, Atkinson RW, Haines A (2002) Impact of hot temperatures on death in London: a time series approach. J Epidemiol Community Health 56:367–372. https://doi.org/10.1136/jech.56.5.367

    Article  Google Scholar 

  18. Hajat S, Armstrong B, Baccini M et al (2006) Impact of high temperatures on mortality: is there an added heat wave effect? Epidemiology 17:632–638. https://doi.org/10.1097/01.ede.0000239688.70829.63

  19. Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci U S A 109:E2415–E2423. https://doi.org/10.1073/pnas.1205276109

    Article  Google Scholar 

  20. Hattis D, Ogneva-Himmelberger Y, Ratick S (2012) The spatial variability of heat-related mortality in Massachusetts. Appl Geogr 33:45–52. https://doi.org/10.1016/j.apgeog.2011.07.008

    Article  Google Scholar 

  21. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

  22. Keellings D, Waylen P (2014a) Increased risk of heat waves in Florida: characterizing changes in bivariate heat wave risk using extreme value analysis. Appl Geogr 46:90–97. https://doi.org/10.1016/j.apgeog.2013.11.008

    Article  Google Scholar 

  23. Keellings D, Waylen P (2014b) Investigating teleconnection drivers of bivariate heat waves in Florida using extreme value analysis. Clim Dyn 44:3383–3391. https://doi.org/10.1007/s00382-014-2345-8

    Article  Google Scholar 

  24. Kendall MG (1955) Rank correlation methods. Charles Griffin, London

  25. Kumar S, Kinter J, Dirmeyer PA et al (2013) Multidecadal climate variability and the “warming hole” in north america: results from CMIP5 twentieth- and twenty-first-century climate simulations. J Clim 26:3511–3527. https://doi.org/10.1175/JCLI-D-12-00535.1

    Article  Google Scholar 

  26. Kunkel KE, Liang X-Z, Zhu J, Lin Y (2006) Can CGCMs simulate the twentieth-century “warming hole” in the central United States? J Clim 19:4137–4153. https://doi.org/10.1175/JCLI3848.1

    Article  Google Scholar 

  27. Kunst AE, Looman CW, Mackenbach JP (1993) Outdoor air temperature and mortality in The Netherlands: a time-series analysis. Am J Epidemiol 137:331–341

    Article  Google Scholar 

  28. Leibensperger EM, Mickley LJ, Jacob DJ et al (2012) Climatic effects of 1950-2050 changes in US anthropogenic aerosols-part 2: climate response. Atmos Chem Phys 12:3349–3362. https://doi.org/10.5194/acp-12-3349-2012

    Article  Google Scholar 

  29. Livneh B, Bohn TJ, Pierce DW et al (2015) A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950-2013. Sci data 2:150042. https://doi.org/10.1038/sdata.2015.42

    Article  Google Scholar 

  30. Mann HB (1945) Nonparametric tests against trend. Mann Source Econom 13:245–259. https://doi.org/10.1017/CBO9781107415324.004

    Google Scholar 

  31. Matyas C (2008) Shape measures of rain shields as indicators of changing environmental conditions in a landfalling tropical storm. Meteorol Appl 15:259–271. https://doi.org/10.1002/met.70

    Article  Google Scholar 

  32. Maurer EP, Wood AW, Adam JC et al (2002) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States*. J Clim 15:3237–3251. https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2

    Article  Google Scholar 

  33. Mazdiyasni O, AghaKouchak A (2015) Substantial increase in concurrent droughts and heatwaves in the United States. Proc Natl Acad Sci 112:11484–11489. https://doi.org/10.1073/pnas.1422945112

    Article  Google Scholar 

  34. McGarigal K (2015) Fragstats help 2015. Available online: http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf

  35. Mearns LO, Arritt R, Biner S et al (2012) The north American regional climate change assessment program. Bull Am Meteorol Soc 93:1337–1362. https://doi.org/10.1175/BAMS-D-II-00223.1

    Article  Google Scholar 

  36. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(80-):994–997. https://doi.org/10.1126/science.1098704

  37. Meehl GA, Arblaster JM, Branstator G (2012) Mechanisms contributing to the warming hole and the consequent U.S. east-west differential of heat extremes. J Clim 25:6394–6408. https://doi.org/10.1175/JCLI-D-11-00655.1

    Article  Google Scholar 

  38. Meehl GA, Arblaster JM, Chung CTY (2015) Disappearance of the southeast U.S. “warming hole” with the late 1990s transition of the Interdecadal Pacific oscillation. Geophys Res Lett 42:5564–5570. https://doi.org/10.1002/2015GL064586

    Article  Google Scholar 

  39. Mora C, Dousset B, Caldwell IR et al (2017) Global risk of deadly heat. Nat Clim Chang 7:501–506. https://doi.org/10.1038/nclimate3322

    Article  Google Scholar 

  40. Pan Z, Liu X, Kumar S et al (2013) Intermodel variability and mechanism attribution of central and southeastern U.S. anomalous cooling in the twentieth century as simulated by CMIP5 models. J Clim 26:6215–6237. https://doi.org/10.1175/JCLI-D-12-00559.1

    Article  Google Scholar 

  41. Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F (2011). Toward a quantitative estimate of future heat wave mortality under global climate change. Environ Health Perspect 119(5):701

  42. Perkins SE, Pitman AJ, Sisson SA (2013) Systematic differences in future 20 year temperature extremes in AR4 model projections over Australia as a function of model skill. Int J Climatol 33:1153–1167. https://doi.org/10.1002/joc.3500

    Article  Google Scholar 

  43. Photiadou C, Jones MR, Keellings D, Dewes CF, (2014) Modeling european hot spells using extreme value analysis. Clim Res 58(3):193–207

  44. Robinson WA, Reudy R, Hansen JE (2002) General circulation model simulations of recent cooling in the east-central United States. J Geophys Res Atmos. https://doi.org/10.1029/2001JD001577

  45. Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci 106:15594–15598. https://doi.org/10.1073/pnas.0906865106

    Article  Google Scholar 

  46. Sekhon JS (2011) Multivariate and propensity score matching software with automated balance optimization: the matching package for R. J Stat Softw 42(7):1–52.

  47. Shepard DS (1984) Computer mapping: The SYMAP interpolation algorithm. In: Gaile GL and Willmott CJ (eds) Spatial statistics and models. Springer, Dordrecht, pp. 133–145.

  48. Stephens MA (1970) Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics without extensive tables. J R Stat Soc Ser B 32:115–122. https://doi.org/10.1038/203024b0

    Google Scholar 

  49. Tan J, Zheng Y, Song G, Kalkstein L, Kalkstein A, Tang X (2007) Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int J Biometeorol 51(3):193–200

  50. Toomey M, Roberts DA, Still C et al (2011) Remotely sensed heat anomalies linked with Amazonian forest biomass declines. Geophys Res Lett. https://doi.org/10.1029/2011GL049041

  51. Vautard R, Honore C, Beekmann M, Rouil L (2005) Simulation of ozone during the august 2003 heat wave and emission control scenarios. Atmos Environ 39:2957–2967

    Article  Google Scholar 

  52. Wang H, Schubert S, Suarez M et al (2009) Attribution of the seasonality and Regionality in climate trends over the United States during 1950–2000. J Clim 22:2571–2590. https://doi.org/10.1175/2008JCLI2359.1

    Article  Google Scholar 

  53. Wang XL, Swail VR (2001) Changes of extreme Wave Heights in northern hemisphere oceans and related atmospheric circulation regimes. J Clim 14:2204–2221. https://doi.org/10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2

    Article  Google Scholar 

  54. Widmann M, Bretherton CS (2000) Validation of mesoscale precipitation in the NCEP reanalysis using a new gridcell dataset for the northwestern United States. J Clim 13:1936–1950. https://doi.org/10.1175/1520-0442(2000)013<1936:VOMPIT>2.0.CO;2

    Article  Google Scholar 

  55. Yu S, Alapaty K, Mathur R et al (2014) Attribution of the United States “warming hole”: aerosol indirect effect and precipitable water vapor. Sci Rep 4:6929. https://doi.org/10.1038/srep06929

    Article  Google Scholar 

  56. Zaitchik B, Macalady AK, Bonneau LR, Smith RB (2006) Europe’s 2003 heatwave: a satellite view of impacts and land-atmosphere feedbacks. Int J Climatol 26:743–769

    Article  Google Scholar 

  57. Zamuda C, Mignone B, Bilello D, Hallett KC, Lee C, Macknick J, Newmark R, Steinberg D (2013) US energy sector vulnerabilities to climate change and extreme weather (No. DOE/PI-0013). Department of Energy, Washington DC

  58. Zick SE, Matyas CJ (2016) A shape metric methodology for studying the evolving geometries of synoptic-scale precipitation patterns in tropical cyclones. Ann Am Assoc Geogr 106:1217–1235. https://doi.org/10.1080/24694452.2016.1206460

    Google Scholar 

Download references

Acknowledgements

This work was funded in part by the Emerging Pathogens Institute at the University of Florida and the College of Liberal Arts and Sciences, as part of the University of Florida Preeminence Initiative.

Author information

Affiliations

Authors

Contributions

DK conceived the study. DK and EB led data analysis. JE led figure production. DK led in writing and interpretation of the results with assistance from EB and JE.

Corresponding author

Correspondence to David Keellings.

Electronic supplementary material

ESM 1

(DOCX 7023 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keellings, D., Bunting, E. & Engström, J. Spatiotemporal changes in the size and shape of heat waves over North America. Climatic Change 147, 165–178 (2018). https://doi.org/10.1007/s10584-018-2140-3

Download citation