Assessing climate change impacts on extreme weather events: the case for an alternative (Bayesian) approach

A Springboard Commentary to this article was published on 28 August 2017

Abstract

The conventional approach to detecting and attributing climate change impacts on extreme weather events is generally based on frequentist statistical inference wherein a null hypothesis of no influence is assumed, and the alternative hypothesis of an influence is accepted only when the null hypothesis can be rejected at a sufficiently high (e.g., 95% or “p = 0.05”) level of confidence. Using a simple conceptual model for the occurrence of extreme weather events, we show that if the objective is to minimize forecast error, an alternative approach wherein likelihoods of impact are continually updated as data become available is preferable. Using a simple “proof-of-concept,” we show that such an approach will, under rather general assumptions, yield more accurate forecasts. We also argue that such an approach will better serve society, in providing a more effective means to alert decision-makers to potential and unfolding harms and avoid opportunity costs. In short, a Bayesian approach is preferable, both empirically and ethically.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allen M (2011) In defense of the traditional null hypothesis: remarks on the Trenberth and Curry WIREs opinion articles. WIREs Clim Change 2:931–934. doi:10.1002/wcc.145

    Article  Google Scholar 

  2. Anderegg WR, Callaway ES, Boykoff MT, Yohe G, Root TYL (2014) Awareness of both type 1 and 2 errors in climate science and assessment. Bull Am Meteorol Soc 95:1445–1451

    Article  Google Scholar 

  3. Bellprat O, Doblas-Reyes F (2016) Attribution of extreme weather and climate events overestimated by unreliable climate simulations. Geophys Res Lett 43:2158–2164

    Article  Google Scholar 

  4. Berliner LM, Levine RA, Shea DJ (2000) Bayesian climate change assessment. J Clim 13:3805–3820

    Article  Google Scholar 

  5. Berry DA (1987) Interim analysis in clinical trials: the role of the likelihood principle. Amer Stat 41:117–122

    Google Scholar 

  6. Bindoff NL, Stott PA, Achuta Rao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  7. Blanchet J, Davison AC (2011) Spatial modeling of extreme snow depth. Ann Appl Stat 5:1699–1725

    Article  Google Scholar 

  8. Brysse K, Oreskes N, O’Reilly J, Oppenheimer M (2013) Climate change prediction: erring on the side of least drama? Glob Environ Chang 23(1):327–337

    Article  Google Scholar 

  9. Cooley D, Nychka D, Naveau P (2007) Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc 102(479):824–840, Applications and case studies. doi:10.1198/016214506000000780

    Article  Google Scholar 

  10. Curry JA (2011) Nullifying the climate null hypothesis. WIREs Clim Change 2:919–924. doi:10.1002/wcc.141

    Article  Google Scholar 

  11. Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased drought risk in California. Proc Natl Acad Sci U S A 112(13):3931–3936. doi:10.1073/pnas.1422385112

    Article  Google Scholar 

  12. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801. doi:10.1029/2012GL051000

    Article  Google Scholar 

  13. Gigerenzer G, Edwards A, (2003) Simple tools for understanding risks: from innumeracy to insight, British Medical Journal, 327, 741–744

  14. Gigerenzer G, Switjink Z, Porter T, Daston L, Beatty J, Kruger L (1989) The empire of chance: how probability changed science and everyday life. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Hegerl GC, Hoegh-Guldberg O, Casassa G, Hoerling MP, Kovats RS, Parmesan C, Pierce DW, Stott PA (2010) Good practice guidance paper on detection and attribution related to anthropogenic climate change. In: Stocker TF, Field CB, Qin D, Barros V, Plattner GK, Tignor M, Midgley PM, Ebi KL (eds) Meeting report of the intergovernmental panel on climate change expert meeting on detection and attribution of anthropogenic climate change. IPCC Working Group I Technical Support Unit, University of Bern, Bern p 8

  16. Herring SC, Hoerling MP, Kossin JP, Peterson TC, Stott PA (2015) Explaining extreme events of 2014 from a climate perspective. Bull Am Meteorol Soc 96(12):S1–S172

    Google Scholar 

  17. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  18. Lewandowsky S, Oreskes N, Risbey JS, Newell BR, Smithson M (2015) Seepage: climate change denial and its effect on the scientific community. Glob Environ Chang 33:1–13. doi:10.1016/j.gloenvcha.2015.02.013

    Article  Google Scholar 

  19. Meehl GA, Arblaster JM, Tebaldi C (2007) Contributions of natural and anthro-pogenic forcing to changes in temperature extremes over the U.S. Geophys Res Lett 34:L19709. doi:10.1029/2007GL030948

    Article  Google Scholar 

  20. National Research Council (2016) Attribution of extreme weather events in the context of climate change. National Academies Press, Washington, DC

    Google Scholar 

  21. Nuzzo R (2014) Scientific method: statistical errors. Nature 506:150–152

    Article  Google Scholar 

  22. Oppenheimer M, Oreskes N, Jamieson D, Brysse K, O’Reilly J, Shindell M, (2017) Assessing assessments: scientific knowledge for public policy, University of Chicago Press. (forthcoming)

  23. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646

    Article  Google Scholar 

  24. Otto FEL, Massey N, van Oldenborgh GJ, Jones RG, Allen MR (2012) Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys Res Lett 39:L04702. doi:10.1029/2011GL050422

    Article  Google Scholar 

  25. Peterson T, Stott P, Herring S (2012) Explaining extreme events of 2011 form a climate change perspective. Bull Am Meteorol Soc 93(7):1041–1067

    Article  Google Scholar 

  26. Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RC (2007) Recent climate observations compared to projections. Science 316(5825):709–709

    Article  Google Scholar 

  27. Shepherd TG (2014) Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci 7:703–708

    Article  Google Scholar 

  28. Shepherd TG (2016) A common framework for approaches to extreme event attribution. Curr Clim Change Rep 2(1):28–38. doi:10.1007/s40641-016-0033-y

    Article  Google Scholar 

  29. Stott PA, Allen M, Christidis N, Dole RM, Hoerling M, Huntingford C, Pall P, Perlwitz J, Stone D (2013) Attribution of weather and climate-related events. In: Asrar GR, Hurrell JW (eds) Climate science for serving society. Springer, Haarlem, pp 307–337

    Google Scholar 

  30. Stott P, Christidis N, Otto FEL, Sun Y, Vanderlinden J-P, van Oldenborgh GJ, Vautard R, von Storch H, Walton P, Yiou P, Zwiers FW (2016) Attribution of extreme weather and climate-related events. Wiley Interdiscip Rev Clim Chang 7(1):23–41. doi:10.1002/wcc.380

    Article  Google Scholar 

  31. Trenberth KE (2011) Attribution of climate variations and trends to human influences and natural variability. WIREs Clim Change 2:925–930

    Article  Google Scholar 

  32. Trenberth KE (2012) Framing the way to relate climate extremes to climate change. Clim Chang 115:283–290

    Article  Google Scholar 

  33. Trenberth KE et al (2015) Attribution of climate extreme events. Nat Clim Chang 5:725–730

    Article  Google Scholar 

Download references

Acknowledgements

We thank James V. Stone, Psychology Department, Sheffield University, Sheffield, England for kindly posting the Bayesian coin flipping routine (MatLab code version 7.5. downloaded from http://jim-stone.staff.shef.ac.uk/BayesBook/Matlab). We thank two anonymous reviewers for the helpful comments on the initial draft of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael E. Mann.

Additional information

A comment to this article is available at doi:10.1007/s10584-017-2049-2

Electronic supplementary material

Fig. S1

(DOCX 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mann, M.E., Lloyd, E.A. & Oreskes, N. Assessing climate change impacts on extreme weather events: the case for an alternative (Bayesian) approach. Climatic Change 144, 131–142 (2017). https://doi.org/10.1007/s10584-017-2048-3

Download citation