Climatic Change

, Volume 146, Issue 1–2, pp 187–200 | Cite as

Groundwater depletion and climate change: future prospects of crop production in the Central High Plains Aquifer

  • Kayla A. Cotterman
  • Anthony D. Kendall
  • Bruno Basso
  • David W. Hyndman


Crop production in the Central High Plains is at an all-time high due to increased demand for biofuels, food, and animal products. Despite the need to produce more food by mid-century to meet expected population growth, under current management and genetics, crop production is likely to plateau or decline in the Central High Plains due to groundwater withdrawal at rates that greatly exceed recharge to the aquifer. The Central High Plains has experienced a consistent decline in groundwater storage due to groundwater withdrawal for irrigation greatly exceeding natural recharge. In this heavily irrigated region, water is essential to maintain yields and economic stability. Here, we evaluate how current trends in irrigation demand may impact groundwater depletion and quantify the impacts of these changes on crop yield and production through to 2099 using the well-established System Approach to Land Use Sustainability (SALUS) crop model. The results show that status quo groundwater management will likely reduce irrigated corn acreage by ~60% and wheat acreage by ~50%. This widespread forced shift to dryland farming, coupled with the likely effects of climate change, will contribute to overall changes in crop production. Taking into account both changes in yield and available irrigated acreage, corn production would decrease by approximately 60%, while production of wheat would remain fairly steady with a slight increase of about 2%.



This work was supported by National Science Foundation Grant WSC 1039180 and United States Department of Agriculture NIFA Water Cap Award 2015-68007-23133.

Author contributions

KAC executed the experiments. KAC, ADK, BB, and DWH wrote and made significant contributions to the structure of the paper. KAC, ADK, BB, and DWH analyzed the data and interpreted results.

Supplementary material

10584_2017_1947_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOC 1.47 mb)
10584_2017_1947_MOESM2_ESM.pdf (26 kb)
ESM 2 (PDF 25 kb)


  1. Al-Kaisi MM, Yin X (2003) Effects of nitrogen rate, irrigation rate, and plant population on corn yield and water use efficiency. Agron J 95:1475–1482CrossRefGoogle Scholar
  2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision.Google Scholar
  3. Asseng S, Ewert F, Martre P et al (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147. doi: 10.1038/nclimate2470 CrossRefGoogle Scholar
  4. Asseng S, Ewert F, Rosenzweig C et al (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3:827–832. doi: 10.1038/ncliamte1916 CrossRefGoogle Scholar
  5. Bagley J, Whitesell A (2017) Water information management and analysis system (WIMAS) for the web.
  6. Basso B, Hyndman DW, Kendall AD et al (2015) Can impacts of climate change and agricultural adaptation strategies be accurately quantified if crop models are annually re-initialized? PLoS One. doi: 10.1371/journal.pone.0127333 Google Scholar
  7. Basso B, Kendall AD, Hyndman DW (2013) The future of agriculture over the Ogallala Aquifer: solutions to grow crops more efficiently with limited water. Earths Futur 1:39–41. doi: 10.1002/2013EF000107 CrossRefGoogle Scholar
  8. Basso B, Ritchie J (2014) Temperature and drought effects on maize yield. Nat Clim Chang 4:233. doi: 10.1038/nclimate2139 CrossRefGoogle Scholar
  9. Basso B, Ritchie JT (2012) Assessing the impact of management strategies on water use efficiency using soil–plant–atmosphere models. Vadose Zone J 11(3). doi: 10.2136/vzj2011.0173
  10. Basso B, Ritchie JT (2015) Simulating crop growth and biogeochemical fluxes in response to land management using the SALUS model. In: Hamilton SK, Doll JE, Robertson GP (eds) The ecology of agricultural landscapes: long-term research on the path to sustainability. Oxford University Press, New York, pp 252–274Google Scholar
  11. Basso B, Ritchie JT, Grace PR, Sartori L (2006) Simulation of tillage systems impact on soil biophysical properties using the SALUS model. Ital J Agron 1:677–688. doi: 10.4081/ija.2006.677 CrossRefGoogle Scholar
  12. Bassu S, Brisson N, Durand JL et al (2014) How do various maize crop models vary in their responses to climate change factors? Glob Chang Biol 20:2301–2320. doi: 10.1111/gcb.12520 CrossRefGoogle Scholar
  13. Boryan CG, Yang Z, Willis P (2014) US geospatial crop frequency data layers. In: Proc. of the 3rd International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2014).Google Scholar
  14. Brown JF, Pervez MS (2014) Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture. Agric Syst 127:28–40. doi: 10.1016/j.agsy.2014.01.004 CrossRefGoogle Scholar
  15. Clarke LE, Edmonds JA, Jacoby HD, et al (2007) Scenarios of greenhouse gas emissions and atmospheric. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research.Google Scholar
  16. Colaizzi P, Gowda P, Marek T, Porter D (2009) Irrigation in the Texas High Plains: a brief history and potential reductions in demand. Irrig Drain 58:257–274. doi: 10.1002/ird CrossRefGoogle Scholar
  17. Crosbie RS, Scanlon BR, Mpelasoka FS et al (2013) Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA. Water Resour Res 49:3936–3951. doi: 10.1002/wrcr.20292 CrossRefGoogle Scholar
  18. Deryng D, Elliott J, Folberth C et al (2016) Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat Clim Chang. doi: 10.1038/nclimate2995 Google Scholar
  19. Döll P (2002) Impact of climate change and variability on irrigation requirements: a global perspective. Clim Chang 54:269–293. doi: 10.1023/A:1016124032231 CrossRefGoogle Scholar
  20. Dzotsi KA, Basso B, Jones JW (2015) Parameter and uncertainty estimation for maize, peanut and cotton using the SALUS crop model. Agric Syst 135:31–47. doi: 10.1016/j.agsy.2014.12.003 CrossRefGoogle Scholar
  21. Ek M, Xia Y, Wood E et al (2011) North American Land Data Assimilation System Phase 2 (NLDAS-2): development and applications. GEWEX News 2:6–8Google Scholar
  22. Elliott J, Deryng D, Müller C et al (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc Natl Acad Sci U S A 111:3239–3244. doi: 10.1073/pnas.1222474110 CrossRefGoogle Scholar
  23. FAO (2015) Crop water information: wheat. In: FAO Water Dev. Manag. Unit.Google Scholar
  24. Fischer G, Tubiello FN, van Velthuizen H, Wiberg DA (2007) Climate change impacts on irrigation water requirements: effects of mitigation, 1990-2080. Technol Forecast Soc Change 74:1083–1107. doi: 10.1016/j.techfore.2006.05.021 CrossRefGoogle Scholar
  25. Fujino J, Nair R, Kainuma M et al (2006) Multi-gas mitigation analysis on stabilization scenarios using aim global model. Energy J 27:343–353Google Scholar
  26. Gleeson T, Wada Y, Bierkens MFP, van Beek LPH (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488:197–200. doi: 10.1038/nature11295 CrossRefGoogle Scholar
  27. Grolemund G, Wickham H (2011) Dates and time made easy with lubridate. J Stat Softw 40:1–25CrossRefGoogle Scholar
  28. Gutentag ED, Heimes FJ, Krothe NC, et al (1984) Geohydrology of the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming.Google Scholar
  29. Haacker EMK, Kendall AD, Hyndman DW (2015) Water level declines in the High Plains Aquifer: predevelopment to resource senescence. Groundwater 54:231–242. doi: 10.1111/gwat.12350 CrossRefGoogle Scholar
  30. Harding KJ, Snyder PK (2012) Modeling the atmospheric response to irrigation in the Great Plains. Part I: general impacts on precipitation and the energy budget. J Hydrometeorol 13:1667–1686. doi: 10.1175/JHM-D-11-098.1 CrossRefGoogle Scholar
  31. Hecox GR, Macfarlane PA, Wilson BB (2002a) Calculation of yield for High Plains wells: relationship between saturated thickness and well yield.Google Scholar
  32. Hecox GR, Whittemore DO, Buddemeier RW, Wilson BB (2002b) Best estimates of aquifer recharge: magnitude and spatial distributionGoogle Scholar
  33. Hijioka Y, Matsuoka Y, Nishimoto H et al (2008) Global GHG emissions scenarios under GHG concentration stabilization targets. J Glob Environ Eng 13:97–108Google Scholar
  34. Hoang TV, Chou TY, Basso B et al (2014) Climate change impact on agricultural productivity environment influence based on simulation model. Int J Adv Remote Sens GIS 3:642–659Google Scholar
  35. Hornbeck R, Keskin P (2011) The evolving impact of the Ogallala Aquifer: agricultural adaptation to groundwater and climate.Google Scholar
  36. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Google Scholar
  37. Jones J, Ritchie J (1990) Crop growth models. Manag Farm Irrig Syst Am Soc Agric Eng:63–89Google Scholar
  38. Marshall E, Aillery M, Malcolm S, Williams R (2015) Agricultural production under climate change: the potential impacts of shifting regional water balances in the United States. Am J Agric Econ 97:568–588. doi: 10.1093/ajae/aau122 CrossRefGoogle Scholar
  39. Maupin MA, Barber NL (2005) Estimated withdrawals from principal aquifers in the United States, 2000.Google Scholar
  40. McGuire VL (2011) Water-level changes in the High Plains Aquifer, predevelopment to 2009, 2007–08, and 2008–09, and change in water in storage, predevelopment to 2009.Google Scholar
  41. National Agricultural Statistics Services database (2015) National Agricultural Statistics Services. In: Natl. Agric. Stat. Serv. database.
  42. Pei H, Scanlon BR, Shen Y et al (2015) Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains. Environ Res Lett 10:44013. doi: 10.1088/1748-9326/10/4/044013 CrossRefGoogle Scholar
  43. Pei L, Moore N, Zhong S et al (2016) Effects of irrigation on summer precipitation over the United States. J Clim 29:3541–3558. doi: 10.1175/JCLI-D-15-0337.1 CrossRefGoogle Scholar
  44. Qi SL, Konduris A, Litke DW, Dupree J (2002) Classification of irrigated land using satellite imagery, the High Plains Aquifer, nominal date 1992.Google Scholar
  45. Reilly J, Tubiello F, McCarl B et al (2003) US agriculture and climate change: new results. Clim Chang 57:43–67. doi: 10.1023/A:1022103315424 CrossRefGoogle Scholar
  46. Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74:887–935. doi: 10.1016/j.techfore.2006.05.026 CrossRefGoogle Scholar
  47. Ritchie J, Godwin D, Otter-Nacke S (1988) CERES-wheat. A simulation model of wheat growth and development.Google Scholar
  48. Ritchie J, Singh U, Godwin D, Hunt L (1989) A user’s guide to CERES Maize-V.2.10.Google Scholar
  49. Ritchie JT, Basso B (2008) Water use efficiency is not constant when crop water supply is adequate or fixed: the role of agronomic management. Eur J Agron 28:273–281CrossRefGoogle Scholar
  50. Rosenberg NJ, Epstein DJ, Wang D et al (1999) Possible impacts of global warming on the hydrology of the Ogallala Aquifer region. Clim Chang 42:677–692. doi: 10.1023/A:1005424003553 CrossRefGoogle Scholar
  51. Scanlon BR, Faunt CC, Longuevergne L et al (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci U S A 109:9320–9325. doi: 10.1073/pnas.1200311109 CrossRefGoogle Scholar
  52. Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci U S A 106:15594–15598. doi: 10.1073/pnas.0906865106 CrossRefGoogle Scholar
  53. Senthilkumar S, Basso B, Kravchenko AN, Robertson GP (2009) Contemporary evidence of soil carbon loss in the U.S. corn belt. Soil Sci Soc Am J 73:2078–2086. doi: 10.2136/sssaj2009.0044 CrossRefGoogle Scholar
  54. Shroyer JP, Thompson C, Brown R, et al (1996) Kansas crop planting guide. Kansas State Univ 1–8.Google Scholar
  55. Smidt SJ, Haacker EMK, Kendall AD et al (2016) Complex water management in modern agriculture: trends in the water-energy-food nexus over the High Plains Aquifer. Sci Total Environ 566:988–1001. doi: 10.1016/j.scitotenv.2016.05.127 CrossRefGoogle Scholar
  56. Smith SJ, Wigley TML (2006) Multi-gas forcing stabilization with Minicam. Energy J 27:373–391Google Scholar
  57. Stanton JS, Qi SL, Ryter DW, et al (2011) Selected approaches to estimate water-budget components of the High Plains, 1940 through 1949 and 2000 through 2009.Google Scholar
  58. Stocker TF, Qin D, Plattner G-K, et al (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change doi:  10.1017/CBO9781107415324.004
  59. Tans P, Keeling R (2016) Trends in atmospheric carbon dioxide. In: Earth Syst. Res. Lab.
  60. Taylor KE, Stouffer RJ, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  61. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264. doi: 10.1073/pnas.1116437108 CrossRefGoogle Scholar
  62. Ulrich J (2016) TTR: technical trading rules.Google Scholar
  63. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20CrossRefGoogle Scholar
  64. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkCrossRefGoogle Scholar
  65. Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40:1–29Google Scholar
  66. Wickham H (2016) tidyr: Easily Tidy Data with “spread ()” and “gather ()” functions.Google Scholar
  67. Wickham H, Francois R (2015) dplyr: a grammar of data manipulation.Google Scholar
  68. Wise M, Calvin K, Thomson A et al (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324(80):1183–1186. doi: 10.1126/science.1168475 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Kayla A. Cotterman
    • 1
  • Anthony D. Kendall
    • 1
  • Bruno Basso
    • 1
    • 2
  • David W. Hyndman
    • 1
  1. 1.Department of Earth and Environmental SciencesMichigan State UniversityEast LansingUSA
  2. 2.W.K. Kellogg Biological StationMichigan State UniversityHickory CornersUSA

Personalised recommendations