Effects of climate change on the distribution of indigenous species in oceanic islands (Azores)

Abstract

Oceanic islands host a high proportion of the world’s endemic species. Many such species are at risk of extinction owing to habitat degradation and loss, biological invasions and other threats, but little is known about the effects of climate change on island native biodiversity. The Azorean archipelago provides a unique opportunity to study species-climate-change relationships. We used ensemble forecasting to evaluate the current and future distribution of well-studied endemic and native bryophytes (19 species), endemic vascular plants (59 species) and endemic arthropods (128 species), for two of the largest Azorean Islands, Terceira and São Miguel. Using a Regional Climate Model (CIELO), and assuming the extreme scenario RCP8.5, we examined changes in the potential distributions of the species and possible loss of climate space for them. Models projected that 23 species (11 %) could lose all adequate climate on either one or both islands. Five additional species were projected to lose ≥90 % of climate space. In total, 90 % of the species were projected to lose climate space: 79 % of bryophytes, 93 % of vascular plants and 91 % of arthropods. We also found for vascular plants and arthropods a tendency for upward shift in altitude in their suitable climate space, while for bryophytes the shift was towards the coastal areas. Our results have profound implications for future conservation priorities on islands, such as for the redrawing of conservation borders of current protected areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alatalo JM, Jägerbrand AK, Molau U (2014) Climate change and climatic events: community, functional and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alp Bot 124:81-91. doi:10.1007/s00035-014-0133-z

    Article  Google Scholar 

  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223-1232. doi:10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  3. Aranda SC, Gabriel R, Borges PAV, Azevedo EB, Lobo JM (2011) Designing a survey protocol to overcome the Wallacean shortfall: a working guide using bryophyte distribution data on Terceira Island (Azores). Bryologist 114:611-624. doi:10.1639/0007-2745-114.3.611

  4. Aranda SC, Gabriel R, Borges PAV, Santos AMC, Azevedo EB, Hortal J, Lobo JM (2014) Geographical, temporal and environmental determinants of bryophyte species richness in the Macaronesian islands. PLoS One 9:e101786-e101786. doi:10.1371/journal.pone.0101786

    Article  Google Scholar 

  5. Araújo MB, New M (2007) Ensemble forecasting of species distribution. Trends Ecol Evol 22:42-47. doi:10.1016/j.tree.2006.09.010

    Article  Google Scholar 

  6. Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527-1539. doi:10.1890/11-1930.1

    Article  Google Scholar 

  7. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14:529-538. doi:10.1111/j.1466-822X.2005.00182.x

    Article  Google Scholar 

  8. Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712-1728. doi:10.1111/j.1365-2699.2006.01482.x

    Article  Google Scholar 

  9. Azevedo EB (1996) Modelação do clima insular à escala local. Modelo CIELO aplicado à ilha Terceira. Dissertation, Universidade dos Açores

  10. Azevedo EB, Pereira LS, Itier B (1998) Modeling the local climate in islands environments. Orographic clouds cover. In: Schmenauer R, Bridman S (eds) First International Conference on Fog and Fog Collection. IDRC, Ottawa, Canada, pp. 433-436

    Google Scholar 

  11. Azevedo EB, Pereira LS, Itier B (1999) Modelling the local climate in island environments: water balance applications. Agric Water Manag 40:393-403. doi:10.1016/S0378-3774(99)00012-8

    Article  Google Scholar 

  12. Bates JW, Preston CD (2011) Can the effects of climate change on British Bryophytes be distinguished from those resulting from other environmental changes? In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte Ecology and Climate Change. Cambridge University Press, Cambridge, pp. 371-407

    Google Scholar 

  13. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365-377. doi:10.1111/j.1461-0248.2011.01736.x

    Article  Google Scholar 

  14. Boieiro M, Carvalho JC, Cardoso P, et al. (2013) Spatial factors play a major role as determinants of endemic ground beetle Beta diversity of Madeira Island Laurisilva. PLoS One 8:e64591. doi:10.1371/journal.pone.0064591

    Article  Google Scholar 

  15. Borges PAV, Lobo JM, Azevedo EB, Gaspar C, Melo C, Nunes LV (2006) Invasibility and species richness of island endemic arthropods: a general model of endemic vs. exotic species. J Biogeogr 33:169-187. doi:10.1111/j.1365-2699.2005.01324.x

    Article  Google Scholar 

  16. Borges PAV, Gabriel R, Arroz A, et al. (2010) The Azorean Biodiversity Portal: an internet database for regional biodiversity outreach. Syst Biodivers 8:423-434. doi:10.1080/14772000.2010.514306

    Article  Google Scholar 

  17. Breiman L (2001) Random Forests. Mach Learn 45:5-32

    Article  Google Scholar 

  18. Cardoso P, Lobo JM, Aranda SC, Dinis F, Gaspar C, Borges PAV (2009) A spatial scale assessment of habitat effects on arthropod communities of an oceanic island. Acta Oecol 35:590-597. doi:10.1016/j.actao.2009.05.005

    Article  Google Scholar 

  19. Cardoso P, Arnedo MA, Triantis KA, Borges PAV (2010) Drivers of diversity in Macaronesian spiders and the role of species extinctions. J Biogeogr 37:1034-1046. doi:10.1111/j.1365-2699.2009.02264.x

    Article  Google Scholar 

  20. Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647-2655. doi:10.1016/j.biocon.2011.07.024

    Article  Google Scholar 

  21. Diniz-Filho JAF, Bini LM, Rangel TF, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897-906. doi:10.1111/j.1600-0587.2009.06196.x

    Article  Google Scholar 

  22. Essl F, Dullinger S, Rabitsch W, Hulme PE, Pyšek P, Wilson JRU, Richardson DM (2015) Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Divers Distrib 21:534-547. doi:10.1111/ddi.12312

    Article  Google Scholar 

  23. Fattorini S, Cardoso P, Rigal F, Borges PAV (2012) Use of Arthropod Rarity for Area Prioritisation: Insights from the Azorean Islands. PLoS One 7:e33995. doi:10.1371/journal.pone.0033995

    Article  Google Scholar 

  24. Florencio M, Cardoso P, Lobo JM, Azevedo EB, Borges PAV (2013) Arthropod assemblage homogenization in oceanic islands: the role of indigenous and exotic species under landscape disturbance. Divers Distrib 19:1450-1460. doi:10.1111/ddi.12121

    Article  Google Scholar 

  25. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547-1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  26. Friedman JH (1991) Multivariate Adaptive Regression Splines. Ann Stat 19:1

    Article  Google Scholar 

  27. Gabriel R, Bates JW (2005) Bryophyte community composition and habitat specificity in the natural forests of Terceira, Azores. Plant Ecol 177:125-144. doi:10.1007/s11258-005-2243-6

    Article  Google Scholar 

  28. Gabriel R, Homem N, Couto A, Aranda SC, Borges PAV (2011) Azorean Bryophytes: a preliminary review of rarity patterns. Açoreana 7:149-206

    Google Scholar 

  29. Gaspar C, Gaston KJ, Borges PAV, Cardoso P (2011) Selection of priority areas for arthropod conservation in the Azores archipelago. J Insect Conserv 15:671-684. doi:10.1007/s10841-010-9365-4

    Article  Google Scholar 

  30. Harter DEV, Irl SDH, Seo B, et al. (2015) Impacts of global climate change on the floras of oceanic islands - Projections, implications and current knowledge. Perspect Plant Ecol 17:160-183. doi:10.1016/j.ppees.2015.01.003

    Article  Google Scholar 

  31. Hastie T, Tibshirani R, Buja A (1994) Flexible Discriminant Analysis by Optimal Scoring. J Am Stat Assoc 89:1255-1270

    Article  Google Scholar 

  32. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biol Conserv 142:14-32. doi:10.1016/j.biocon.2008.10.006

    Article  Google Scholar 

  33. Hijmans RJ, Guarino L, Bussink C, Mathur P, Cruz M, Barrentes I, Rojas E (2004) DIVA-GIS. Vsn. 7.5. A geographic information system for the analysis of species distribution data. Manual available at http://www.diva-gis.org

  34. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 83:2027-2036. doi:10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2

  35. Hortal J, Borges PAV, Dinis F, et al. (2005) Using ATLANTIS - Tierra 2.0 and GIS environmental information to predict the spatial distribution and habitat suitability of endemic species. In: Borges PAV, Cunha R, Gabriel R, Martins AMF, Silva L, Vieira V(eds) A list of the terrestrial fauna (Mollusca and Arthropoda) and flora (Bryophyta, Pteridophyta and Spermatophyta) from the Azores. Direcção Regional de Ambiente e Universidade dos Açores pp 69-113

  36. Hortal J, Borges PAV, Jiménez-Valverde A, Azevedo EB, Silva L (2010) Assessing the areas under risk of invasion within islands through potential distribution modelling: the case of Pittosporum undulatum in São Miguel, Azores. J Nat Conserv 18:247-257. doi:10.1016/j.jnc.2009.11.002

    Article  Google Scholar 

  37. IPCC-AR5 (2014) Summary for Policymakers, In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC(eds). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  38. Jiménez-Valverde A, Lobo JM (2007) Potential distribution of the endangered spider Macrothele calpeiana (Araneae, Hexathelidae) and the impact of climate warming. Acta Zool Sin 53:865-876

    Google Scholar 

  39. Jiménez-Valverde A, Diniz F, Azevedo EB, Borges PAV (2009) Species distribution models do not account for abundance: the case of arthropods in Terceira Island. Ann Zool Fenn 46:451-464

    Article  Google Scholar 

  40. Kier G, Kreft H, Lee TM, et al. (2009) A global assessment of endemism and species richness across island and mainland regions. P Natl Acad Sci USA 106:9322-9327

    Article  Google Scholar 

  41. Kreft H, Jetz W, Mutke J, Kier G, Barthlott W (2008) Global diversity of island floras from a macroecological perspective. Ecol Lett 11:116-127

    Google Scholar 

  42. Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J, Scott JK (2012) CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol Evol 3:53-64. doi:10.1111/j.2041-210X.2011.00134.x

    Article  Google Scholar 

  43. Leroy B, Paschetta M, Canard A, Bakkenes M, Isaia M, Ysnel F (2013) First assessment of effects of global change on threatened spiders. Biol Conserv 161:155-163. doi:10.1016/j.biocon.2013.03.022

    Article  Google Scholar 

  44. Mahalanobis PC (1936) On the generalised distance in statistics. Proc Natl Inst Sci India 2:49-55

    Google Scholar 

  45. Maharaj SS, New M (2013) Modelling individual and collective species responses to climate change within Small Island States. Biol Conserv 167:283-291. doi:10.1016/j.biocon.2013.08.027

    Article  Google Scholar 

  46. Malcolm JR, Liu CR, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20:538-548. doi:10.1111/j.1523-1739.2006.00364.x

    Article  Google Scholar 

  47. Martin Y, Dyck HV, Dendoncker N, Titeux N (2013) Testing instead of assuming the importance of land use change scenarios to model species distributions under climate change. Glob Ecol Biogeogr 22:1204-1216. doi:10.1111/geb.12087

    Article  Google Scholar 

  48. Miranda P, Coelho FES, Tomé AR, Valente MA (2002) twentieth Century Portuguese Climate and Climate Scenarios. Chapter 2. In: Santos FD, Forbes K, Moita R (eds) Impacts and Adaptation Measures - SIAM Project-Climate Change in Portugal. Scenarios Gradiva, Lisboa, Portugal

  49. Moo-Llanes D, Ibarra-Cerdeña CN, Rebollar-Téllez EA, Ibáñez-Bernal S, González C, Ramsey JM (2013) Current and future niche of North and Central American Sand Flies (Diptera: Psychodidae) in Climate Change scenarios. Plos Neglect Trop D 7:e2421. doi:10.1371/journal.pntd.0002421

    Article  Google Scholar 

  50. Pacifici M, Foden WB, Visconti P, et al. (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215-224. doi:10.1038/nclimate2448

    Article  Google Scholar 

  51. Peters GP, Andrew RM, Boden T, et al. (2013) The challenge to keep global warming below 2 °C. Nat Clim Chang 3:4-6. doi:10.1038/nclimate1783

    Article  Google Scholar 

  52. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231-259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  53. Santos FD, Valente MA, Miranda PMA, Aguiar A, Azevedo EB, Tomé AR, Coelho F (2004) Climate change scenarios in the Azores and Madeira Islands. World Resour Review 16:473-491

    Google Scholar 

  54. Sérgio C, Figueira R, Menezes R (2011) Modelling the distribution of Sematophyllum substrumulosum (Hampe) E. Britton as a signal of climatic changes in Europe. In: Tuba Z, Slack NG, Stark LR (eds) Bryophyte Ecology and Climate Change. Cambridge University Press, Cambridge, pp. 427-439

    Google Scholar 

  55. Spak S, Holloway T, Lynn B, Goldberg R (2007) A comparison of statistical and dynamical downscaling for surface temperature in North America. J Geophys Res 112:D08101. doi:10.1029/2005JD006712

  56. Stockwell DRB, Peters DG (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Syst 13:143-158

    Article  Google Scholar 

  57. Terzopoulou S, Rigal F, Whittaker RJ, Borges PAV, Triantis KA (2015) Drivers of extinction: the case of Azorean beetles. Biol Lett. doi:10.1098/rsbl.2015.0273

    Google Scholar 

  58. Thom D, Rammer W, Dirnböck T, et al. (2016) The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J Appl Ecol. doi:10.1111/1365-2664.12644

    Google Scholar 

  59. Triantis KA, Borges PAV, Ladle RJ, et al. (2010) Extinction debt on oceanic islands. Ecography 33:285-294

    Google Scholar 

  60. Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation, 2nd edn. Oxford, University Press, Oxford

  61. Wilson RJ, Gutiérrez D, Gutiérrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138-1146. doi:10.1111/j.1461-0248.2005.00824.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to all students and researchers that contributed to the inventory of bryophytes, vascular plants and arthropods in the last decade within long-term research projects of Azorean Biodiversity Group. The authors would also like to thank the valuable suggestions from the reviewers and Dr. Simon Donner, contributing to the improvement of this manuscript.

Maria Teresa Ferreira was funded by the Azorean Regional Fund for Science and Technology and the Pro-Emprego for funding her grant within the project “Implications of climate change for Azorean Biodiversity - IMPACTBIO” [M2.1.2/I/005/2011].

Data on species distributions was gathered based on the EU projects INTERREGIII B “ATLÂNTICO” (2004-2006), BIONATURA (2006-2008), ATLANTISMAR - “Mapping coastal and marine biodiversity of the Azores” (Ref: M2.1.2/I/027/2011), and “MOVECLIM - Montane vegetation as listening posts for climate change” (Ref: M2.1.2/F/04/2011/NET).

The climatic modelling work of EBA was developed in the framework of the project “EstraMAR” (MAC/3/C177) supported by the European Union through the MAC Transnational Program of Cooperation – Madeira-Azores-Canaries.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Ferreira.

Electronic supplementary material

ESM 1

(PDF 261 kb)

ESM 2

(PDF 302 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M.T., Cardoso, P., Borges, P.A. et al. Effects of climate change on the distribution of indigenous species in oceanic islands (Azores). Climatic Change 138, 603–615 (2016). https://doi.org/10.1007/s10584-016-1754-6

Download citation

Keywords

  • Climate change
  • Azores
  • Oceanic Islands
  • Ensemble modelling
  • Species distribution