Climatic Change

, Volume 135, Issue 3–4, pp 453–466 | Cite as

Charting trends in the evolution of the La Alhambra forest (Granada, Spain) through analysis of pollen-emission dynamics over time

  • Paloma Cariñanos
  • Manuel Casares-Porcel
  • Ana Valle Díaz de la Guardia
  • Rafael De la Cruz-Márquez
  • Consuelo Díaz de la Guardia


Changing climate conditions are having an appreciable impact both on the adaptive response of the species growing in urban and peri-urban forests (UPF) and on their evolutionary dynamics. This study sought to chart the evolution and pollen dynamics of major species growing in the La Alhambra peri-urban forest (Granada, Spain) over the last 22 years, to examine correlations with weather-related parameters and to estimate potential trends in the event of future climate change. Findings showed that overall pollen levels have gradually increased over the study period, reflecting both plant species diversification and the ability of Mediterranean species—particularly Pinus and Quercus—to adapt to short-term water stress situations. Nevertheless, the climate conditions expected over the coming years in the Mediterranean region, with considerable increase in winter temperatures and a drop in precipitation by up to 24 % for summer rainfall, there is likely to be a reduction in the intensity of pollen emissions, at least from species with strict environmental requirements. The results confirm that pollen emission is a valuable biological indicator for estimating the adaptive response of various species and the resilience of the forest mass to climate-change events.


Pollen Count Airborne Pollen Pollen Index Simple Linear Regression Model Pollen Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the Palace Gardens, Forest and Orchards Service for their assistance in carrying out this study. They also wish to thank the Andalusia Regional Government Innovation, Development and Enterprise Council for support through Project P10-RNM-5958, and the National Program of Research, Development and Innovation, Spanish Ministry of the Economy and Competitiveness, for backing through Project CGL2014-54731-R FENOMED.

Supplementary material

10584_2015_1589_MOESM1_ESM.docx (15 kb)
Online Resource 1 (DOCX 15 kb)
10584_2015_1589_MOESM2_ESM.docx (18 kb)
Online Resource 2 (DOCX 17 kb)
10584_2015_1589_MOESM3_ESM.docx (44 kb)
Online Resource 3 (DOCX 43 kb)


  1. Allard V, Ourcival JM, Rambal S, Jofre R, Rocheteau A (2008) Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Glob Chang Biol 14:714–725CrossRefGoogle Scholar
  2. Archaux F, Wolters V (2006) Impact of summer drought on forest biodiversity: what do we know? Ann For Sci 63:645–652CrossRefGoogle Scholar
  3. Awada T, Josiah S (2007) Physiological responses of four hazelnut hybrids to water availability in Nebraska. Great Plains Research: A Journal of Natural and Social Sciences 17:193–202Google Scholar
  4. Beggs PJ (2004) Impacts of climate change on aeroallergen: past and future. Clin Exp Allergy 34:1507–1013CrossRefGoogle Scholar
  5. Calamassi R, Della Rocca G, Falusi M, Paoletti E, Shati S (2001) Resistance to water stress in seedlings of eight European provenances of Pinus halepensis mill. Ann For Sci 58:663–672CrossRefGoogle Scholar
  6. Cariñanos P, Galán C, Alcázar P, Domínguez E (2004) Airborne pollen records response to climatic conditions in arid areas of the Iberian peninsula. Environ Exp Bot 52:11–22CrossRefGoogle Scholar
  7. Cariñanos P, Díaz de la Guardia C, Algarra JA, De Linares C, Irurita JM (2013) The pollen counts as bioindicator of meteorological trends and tool for assessing the status of endangered species: the case of artemisia in sierra Nevada (Spain). Clim Chang 119:799–813CrossRefGoogle Scholar
  8. Cariñanos P, Adinolfi C, Díaz de la Guardia C, De Linares C, Casares-Porcel M (2015) Characterization of allergen emission sources in urban areas. J Environ Qual. doi: 10.2134/jeq2015.02.0075 Google Scholar
  9. Casares M (2010) Origin and causes of landscape transformation in the historic districts of the city of Granada. In VIII encuentro internacional de revitalización de centros históricos. El paisaje urbano en las ciudades históricas Centro cultural de España en Méjico, MéxicoGoogle Scholar
  10. Crepinsek Z, Stampar F, Kajfez-Bogataj L, Solar A (2012) The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia. Int J Biometeorol 56:681–694CrossRefGoogle Scholar
  11. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flanningan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton M (2001) Climate change and forest disturbances. Bioscience 51:723–734CrossRefGoogle Scholar
  12. Damialis A, Halley JM, Gioulekas D, Vokou D (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmos Environ 41:7011–7021CrossRefGoogle Scholar
  13. Data of the Tourist, Educative and Cultural Activity in the Monument of la Alhambra and Generalife (2013) Patronage of La Alhambra and Generalife. Education, Culture and Sports Council. Regional Government of Andalusia, SpainGoogle Scholar
  14. Díaz de la Guardia C, Alba F, Nieto D, Sabariego S (2003) Diez años de control aerobiológico en la atmósfera de la ciudad de Granada: calendario polínico (ten years of aerobiological control in the city of Granada: pollen calendar) (1992–2001). Polen 13:251–260Google Scholar
  15. Douglas J (2006) Peri-urban ecosystems and societies transitional zones and contrasting values. In: McGregor D, Simon D, Thompson D (eds) Peri-urban interface: approaches to sustainable natural and human resource use. Earthscan Publication Ltd., London, UK, pp. 18–29Google Scholar
  16. EEA, 2012: Climate change, Impacts and vulnerability in Europe 2012, an Indicator-Based Report. EEA Report No. 12/2012, European Environmentala Agency (EEA), Copenhagen, Denmark, 304 pp.Google Scholar
  17. Escobedo FJ, Kroeger T, E WJ (2011) Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159:2078–2087CrossRefGoogle Scholar
  18. Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292CrossRefGoogle Scholar
  19. Galán C, Fuillerat MJ, Comtois P, Dominguez E (1998) Bioclimatic factors affecting daily cupressaceae flowering in southwest Spain. Int J Biometeorol 41:95–100CrossRefGoogle Scholar
  20. Galán C, Cariñanos P, García-Mozo H, Alcázar P, Dominguez-Vilches E (2001) Model for forecasting Olea europea L. airborne pollen in south-west Andalusia, Spain. Int J Biometeorol 45:59–63CrossRefGoogle Scholar
  21. Galán C, Cariñanos P, Alcázar P, Dominguez E (2007) Quality and management manual of the Spanish aerobiology network (REA). servicio publicaciones university of Cordoba, Cordoba, Spain. Scholar
  22. Gálmez J, Flexas J, Savé R, Mediana H (2007) Water relations and stomatal characteristics of Mediterranean plants with different growths forms and leaf habitats: responses to water stress recovery. Plant Soil 290:139–155CrossRefGoogle Scholar
  23. García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, Gutiérrez M, Aira MJ, Roure JM, Trigo MM, Dominguez-Vilches (2006) Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change. Annals of Agricultural and Environmental Medicine 13:209–224Google Scholar
  24. Gordo O, Sanz JJ (2005) Phenology and climate change: a long-term study in a Mediterranean locality. Oecology 146:484–495CrossRefGoogle Scholar
  25. Hagen K, De la Cruz Márquez R (2010) El agua en los bosques de la Alhambra. In. El agua domesticada. Los paisajes de los regadíos de montaña en Andalucía (Water in the forests of the Alhambra. In. The domesticated water. The landscapes of mountain irrigation in Andalusia). Guzmán Álvarez, J.R., Navarro Cerrillo, R.M. (Eds.). Agencia Andaluza del Agua. Consejería de Agricultura, Pesca y Medio Ambiente. Junta de Andalucía.Google Scholar
  26. Hansen AJ, Neilson RP, Dale VH, Flather CH, Iverson LR, Currie DJ, Shafer S, Cook R, Barthein PJ (2001) Global change in forests: responses of species, communities and biomes. Bioscience 51:765–779CrossRefGoogle Scholar
  27. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geographical Research 113(D20):D20119Google Scholar
  28. Jato V, Rodriguez-Rajo FJ, Aira MJ (2007) Use of Quercus ilex subsp. ballota phenological and pollen production data for interpreting quercus pollen curves. Aerobiologia 23:91–105CrossRefGoogle Scholar
  29. Kovats RS, Valentini R, Bouwer LM, Georgopoulou D, Jacob E, Martin M, Rounsevell M, Soussana JF (2014) Europe. In: Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCraken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (Barros VR. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1267–1326Google Scholar
  30. Linderhol HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14CrossRefGoogle Scholar
  31. Linskens HF, Cresti M (2000) Pollen allergy as an ecological phenomenon: a review. Plant Byosystems 134:341–352CrossRefGoogle Scholar
  32. Lloret F, Siscart D, Dalmases C (2004) Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob Chang Biol 10:2092–2099CrossRefGoogle Scholar
  33. Lu P, Yu Q, Liu J, Lee X (2006) Advance of tree-flowering dates in response to urban climate change. Agric For Meteorol 138:120–131CrossRefGoogle Scholar
  34. Maciver DC, Wheaton E (2005) Tomorrow’s forests: adapting to a changing climate. Clim Chang 70:273–282CrossRefGoogle Scholar
  35. Myking T (1999) Winter dormancy release and budburst in Betula pendula Roth. And B. pubescens ehrh ecotypes. Phyton 39:139–146Google Scholar
  36. Nienstaedt H (1967) Chilling requirements in seven picea species. Silvae Geneticae 16:65–68Google Scholar
  37. Nitiu DS (2003) Annual, daily and intradiurnal variation of celtis pollen in the ciyu of La Plata, Argentina. Aerobiologia 19:71–78CrossRefGoogle Scholar
  38. Ogaya R, Peñuelas J (2003) Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ Exp Bot 50:137–148Google Scholar
  39. Pardo de Donlebún R (2012) Nature and Countryside within the urban fringe. European periurban areas. Characterization and a management recommendations. Consejería de Agricultura, Pesca y Medio Ambiente. Junta de Andalucía (Sevilla).Google Scholar
  40. Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Chang Biol 8:531–544CrossRefGoogle Scholar
  41. Perea L, Navarro, Herrera MA (2001) Estado y condición de los bosques de La Alhambra. III Congreso Forestal Español, Abstract Book. Ed. Soc. Esp. CC. Forestales, Madrid.Google Scholar
  42. Pinto CA, Henriques MO, Figueiredo JP, David JS, Abreu FG, Pereira JS, Correia J, David TS (2011) Phenology and growth dynamics in Mediterranean evergreen oaks: effects of environmental conditions and water relations. For Ecol Manag 262:500–508CrossRefGoogle Scholar
  43. Rogers CA, Wayne PM, Macklin E, et al. (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect 88:279–282Google Scholar
  44. Romanovskaja D, Baksiené E, Razukas A, Tripolskaja L (2012) Influence of climate change on the European hazel (Corylus avellana L.) and Norway maple (Acer platanoides L.) phenology in Lithuania during the period 1961–2010. Balt For 18:228–236Google Scholar
  45. Saini HS (1997) Effect of water stress on male gametophyte development in plants. Sex Plant Reprod 10:67–73CrossRefGoogle Scholar
  46. Scarascia-Mugnozza G, Oswald H, Piussis P, Radoglan K (2000) Forests in the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109CrossRefGoogle Scholar
  47. Solla A, Gil L (2002) Influence of water stress on Dutch el disease symptoms in Ulmus minor. Canadian Journal of Biology 80:810–817Google Scholar
  48. Verdú M (2002) Age at maturity and diversification in woody angiosperms. Evolution 56:1352–1361CrossRefGoogle Scholar
  49. Villafranca Jiménez MM , Salmerón Escobar P (2010) The director plan of the Alhambra and generalife, 2007–2015. Ed.: Patronato Alhambra y Generalife.Google Scholar
  50. Wolkovich EM, Cook BI, Allen JM, et al. (2012) Warming experiments underpredict plant phenologicala responses to climate change. Nature 485:494–497Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Paloma Cariñanos
    • 1
  • Manuel Casares-Porcel
    • 1
  • Ana Valle Díaz de la Guardia
    • 1
  • Rafael De la Cruz-Márquez
    • 2
  • Consuelo Díaz de la Guardia
    • 1
  1. 1.Department of BotanyUniversity of GranadaGranadaSpain
  2. 2.Palace Gardens, Forest and Orchards ServiceAlhambra and Generalife Management BoardGranadaSpain

Personalised recommendations