The importance of aerosol scenarios in projections of future heat extremes

Abstract

Global climate models project a large increase in the frequency and intensity of heat extremes (HEs) during the 21st century under the Representative Pathway Concentration (RCP8.5) scenario. To assess the relative sensitivity of future HEs to the level of greenhouse gas (GHG) increases and aerosol emission decreases, we contrast Community Earth System Model (CESM)’s Large Ensemble projection under RCP8.5 with two additional ensembles: one keeping aerosol emissions at 2005 levels (but allowing all other forcings to progress as in RCP8.5) and the other using the RCP4.5 with lower GHG levels. By the late 21st century (2060–2080), the 3 °C warmer-than-present-day climate simulated under RCP8.5 could be 0.6 °C cooler (0.9 °C over land) if the aerosol emissions in RCP8.5 were not reduced, compared with a 1.2 °C cooling due to GHG mitigation (switching from RCP8.5 to RCP4.5). Aerosol induced cooling and associated HE reductions are relatively stronger in the Northern Hemisphere (NH), as opposed to GHG mitigation induced cooling. When normalized by the global mean temperature change in these two cases, aerosols have a greater effect than GHGs on all HE statistics over NH extra-tropical land areas. Aerosols are more capable of changing HE duration than GHGs in the tropics, explained by stronger dynamical changes in atmospheric circulation, despite weaker thermodynamic changes. Our results highlight the importance of aerosol scenario assumptions in projecting future HEs at regional scales.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anderson GB, Oleson KW, Jones B, Peng RD (2015). Predicting high-mortality heatwaves: Developing health-based models to predict whether a heatwave is high-mortality or less dangerous based on heatwave and community characteristics. Submitted to Climatic Change

  2. Brovkin V, Boysen L, Arora V, et al. (2013) Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century, J. Climate 26:6859–6881. doi:10.1175/JCLI-D-12-00623.1

    Article  Google Scholar 

  3. Deryng D, Conway D, Ramankutty N, et al. (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9:34011

    Article  Google Scholar 

  4. Fang Y, Mauzerall DL, Liu J, et al. (2013) Impacts of 21st century climate change on global air pollution-related premature mortality. Clim Chang 121:239–253. doi:10.1007/s10584-013-0847-8

    Article  Google Scholar 

  5. Fischer EM, Sedláček J, Hawkins E, Knutti R (2014) Models agree on forced response pattern of precipitation and temperature extremes. Geophys Res Lett 41:2014GL062018. doi:10.1002/2014GL062018

    Google Scholar 

  6. Gettelman A, Liu X, Ghan SJ, et al. (2010) Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model. J Geophys Res Atmos 115:D18216. doi:10.1029/2009JD013797

    Article  Google Scholar 

  7. Horton DE, Skinner CB, Singh D, Diffenbaugh NS (2014) Occurrence and persistence of future atmospheric stagnation events. Nat Clim Chang. doi:10.1038/NCLIMATE2272

    Google Scholar 

  8. Hu A, Xu Y, Tebaldi C, et al. (2013) Mitigation of short-lived climate pollutants slows sea-level rise. Nat Clim Chang 3:730–734

    Article  Google Scholar 

  9. Jones B, O’Neill B (2013) Historically grounded spatial population projections for the continental United States. Environ Res Lett 8(4):044021

    Article  Google Scholar 

  10. Jones B et al. (2015) Population exposure to heat-related extremes: Demographic change vs climate change. Submitted to Climatic Change.

  11. Kay JE, Deser C, Phillips A, et al. (2014) The community earth system model (CESM) large ensemble. A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bull Am Meteorol Soc, Project. doi:10.1175/BAMS-D-13-00255.1

    Google Scholar 

  12. Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Chang 119:345–357. doi:10.1007/s10584-013-0705-8

    Article  Google Scholar 

  13. Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55. doi:10.1146/annurev.publhealth.29.020907.090843

    Article  Google Scholar 

  14. Lamarque J-F, Kyle GP, Meinshausen M, et al. (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Clim Chang 109:191–212. doi:10.1007/s10584-011-0155-0

    Article  Google Scholar 

  15. Lau WKM, Kim KM (2011) The 2010 Pakistan flood and Russian heat wave: teleconnection of hydrometeorological extremes. J Hydrometeorol 13:392–403. doi:10.1175/JHM-D-11-016.1

    Article  Google Scholar 

  16. Lau NC, Nath MJ (2012) A model study of heat waves over North America: meteorological aspects and projections for the twenty-first century. J Clim 25:4761–4764. doi:10.1175/JCLI-D-11-00575.1

    Article  Google Scholar 

  17. Lawrence et al. (2015) Attribution of the biogeochemical and biogeophysical impacts of CMIP5. Submitted to Climatic Change

  18. Lehner F et al. (2015) Increasing risk of record-breaking summer temperatures with global warming and the potential for mitigation. Submitted to Climatic Change

  19. Leibensperger EM, Mickley LJ, Jacob DJ (2008) Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change. Atmos Chem Phys Discuss 8:12253–12282. doi:10.5194/acpd-8-12253-2008

    Article  Google Scholar 

  20. Leibensperger EM, Mickley LJ, Jacob DJ, et al. (2012) Climatic effects of 1950–2050 changes in US anthropogenic aerosols; part 2: climate response. Atmos Chem Phys 12:3349–3362. doi:10.5194/acp-12-3349-2012

    Article  Google Scholar 

  21. Levy H, Horowitz LW, Schwarzkopf MD, et al. (2013) The roles of aerosol direct and indirect effects in past and future climate change. J Geophys Res Atmos 118:4521–4532. doi:10.1002/jgrd.50192

    Article  Google Scholar 

  22. Lin L, et al. (2015) Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Submitted to Climatic Change

  23. Liu X, Easter RC, Ghan SJ, et al. (2012) Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5. Geosci Model Dev 5:709–739. doi:10.5194/gmd-5-709-2012

    Article  Google Scholar 

  24. Lucas C, Timbal B, Nguyen H (2014) The expanding tropics: a critical assessment of the observational and modeling studies. Wiley Interdiscip Rev Clim Chang 5:89–112

  25. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997. doi:10.1126/science.1098704

    Article  Google Scholar 

  26. Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys Res Letts 36:L23701. doi:10.1029/2009GL040736

  27. Meehl GA, Washington WM, Arblaster JM, et al. (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26:6287–6308. doi:10.1175/JCLI-D-12-00572.1

    Article  Google Scholar 

  28. Ming Y, Russell LM, Bradford DF (2005) Health and climate policy impacts on sulfur emission control. Rev Geophys 43:RG4001. doi:10.1029/2004RG000167

    Article  Google Scholar 

  29. Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description Numer tEsts J Clim 21:3642–3659. doi:10.1175/2008JCLI2105.1

    Google Scholar 

  30. B. O’Neill, A. Gettelman. (2015) Introduction to the special issue. Submitted to Climatic Change.

  31. Oleson et al., (2015) Avoided impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP8.5 and RCP4.5. Submitted to Climatic Change.

  32. Peterson TC, Heim RR, Hirsch R, et al. (2013) Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull Am Meteorol Soc 94:821–834. doi:10.1175/BAMS-D-12-00066.1

    Article  Google Scholar 

  33. Ramanathan V, Feng Y (2008) On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc Natl Acad Sci U S A 105:14245–14250. doi:10.1073/pnas.0803838105

    Article  Google Scholar 

  34. Riahi K, Rao S, Krey V, et al. (2011) RCP8.5-a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57. doi:10.1007/s10584-011-0149-y

    Article  Google Scholar 

  35. Rogelj J, Rao S, McCollum DL, et al. (2014) Air-pollution emission ranges consistent with the representative concentration pathways. Nat Clim Chang 4:446–450

    Article  Google Scholar 

  36. Rotstayn LD, Plymin EL, Collier MA, et al. (2014) Declining aerosols in CMIP5 projections: effects on atmospheric temperature structure and midlatitude jets. J Clim 27:6960–6977. doi:10.1175/JCLI-D-14-00258.1

    Article  Google Scholar 

  37. Sanderson et al. (2015) A new large CESM initial condition ensemble to assess avoided impacts in a climate mitigation scenario. Submitted to Climatic Change

  38. Sillmann J, Kharin VV, Zwiers FW, et al. (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future Clim pRojections J Geophys Res Atmos 118:2473–2493. doi:10.1002/jgrd.50188

    Article  Google Scholar 

  39. Stott PA, et al (2011) Attribution of weather and climate-related extreme events. Climate Science for Serving Society: Research, Modelling and Prediction Priorities, J. W. Hurrell and G. Asrar, Eds., Springer.

  40. Tai APK, Mickley LJ, Jacob DJ, et al. (2012) Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the United States: implications for PM2.5 sensitivity to climate change. Atmos Chem Phys 12:3131–3145. doi:10.5194/acp-12-3131-2012

    Article  Google Scholar 

  41. Tebaldi C, Wehner (2015). Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5. Submitted to Climatic Change

  42. Thomson AM, Calvin KV, Smith SJ, et al. (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77–94. doi:10.1007/s10584-011-0151-4

    Article  Google Scholar 

  43. van Vuuren DP, Meinshausen M, Plattner GK, et al. (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci 105:15258–15262. doi:10.1073/pnas.0711129105

    Article  Google Scholar 

  44. von Storch H, Zwiers FW (1999) Statistical Analysis in Climate Research, Cambridge

  45. Wigley TML (1991) Could reducing fossil-fuel emissions cause global warming? Nature 349:503–506

    Article  Google Scholar 

  46. Wuebbles D, Meehl G, Hayhoe K, et al. (2014) CMIP5 climate model analyses: climate extremes in the United States. Bull Am Meteorol Soc 95:571–583. doi:10.1175/BAMS-D-12-00172.1

    Article  Google Scholar 

  47. Xu Y, Xie SP (2015) Ocean mediation of tropospheric response to reflecting and absorbing aerosols. Atmos Chem Phys 15:5827–5833. doi:10.5194/acp-15-5827-2015

    Article  Google Scholar 

  48. Zhang J, Reid JS (2010) A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and level 2 MISR aerosol products. Atmos Chem Phys 10:10949–10963. doi:10.5194/acp-10-10949-2010

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Claudia Tebaldi and Keith Oleson for discussions and Bryan Jones for data. We acknowledge helpful comments from Andrew Gettelman and two anonymous reviewers. This study was partially funded by Regional and Global Climate Modeling Program (RGCM) of the US Department of Energy’s Office of Science (BER), Cooperative Agreement (DE-FC02-97ER62402). Y Xu is also supported by Advanced Study Programme of National Center for Atmospheric Research (NCAR). The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the US Department of Energy. NCAR is funded by the National Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yangyang Xu.

Additional information

This article is part of a Special Issue on “Benefits of Reduced Anthropogenic Climate ChangE (BRACE)” edited by Brian O'Neill and Andrew Gettelman.

Electronic supplementary material

Fig S1

(DOCX 495 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Lamarque, JF. & Sanderson, B.M. The importance of aerosol scenarios in projections of future heat extremes. Climatic Change 146, 393–406 (2018). https://doi.org/10.1007/s10584-015-1565-1

Download citation