Climatic Change

, Volume 134, Issue 1–2, pp 193–208 | Cite as

Predicting the potential distribution of Lantana camara L. under RCP scenarios using ISI-MIP models

  • Z. Qin
  • J. E. Zhang
  • A. DiTommaso
  • R. L. Wang
  • K. M. Liang


Projections of anthropogenically-induced global climate change and its impacts on potential distributions of invasive species are crucial for implementing effective conservation and management strategies. Lantana camara L., a popular ornamental plant native to tropical America, has become naturalized in some 50 countries and is considered one of the world’s worst weeds. To increase our understanding of its potential extent of spread and examine the responses of global geographic distribution, predictive models incorporating global distribution data of L. camara were generated. These models were used to identify areas of environmental suitability and project the effects of future climate change based on an ensemble of the four global climate models (GCMs) within the Inter-Sectoral Impact Model Intercomparis on Project (ISI-MIP). Each model was run under the four emission scenarios (Representative Concentration Pathways, RCPs) using the Maximum entropy (Maxent) approach. Future model predictions through 2050 indicated an overall expansion of L. camara, despite future suitability varying considerably among continents. Under the four RCP scenarios, the range of L. camara expanded further inland in many regions (e.g. Africa, Australia), especially under the RCP85 emission scenario. The global distribution of L. camara, though restricted within geographical regions of similar latitude as at present (35°N ~ 35°S), was projected to expand equator-ward in response to future climate conditions. Considerable discrepancy in predicted environmental suitability for L. camara among GCMs highlights the complexities of the likely effects of climate change on its potential distribution and the need to improve the reliability of predictions in novel climates.


Emission Scenario Potential Distribution Range Shift Bioclimatic Variable Minimum Average Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10584_2015_1500_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)
10584_2015_1500_MOESM2_ESM.docx (25 kb)
ESM 2 (DOCX 24 kb)
10584_2015_1500_MOESM3_ESM.docx (20 kb)
ESM 3 (DOCX 19 kb)
10584_2015_1500_MOESM4_ESM.pdf (303 kb)
Fig. S1 (PDF 303 kb)
10584_2015_1500_MOESM5_ESM.docx (176 kb)
Fig. S2 (DOCX 175 kb)
10584_2015_1500_MOESM6_ESM.pdf (1.2 mb)
Fig. S3 (PDF 1250 kb)
10584_2015_1500_MOESM7_ESM.docx (199 mb)
Fig. S4 (DOCX 203790 kb)
10584_2015_1500_MOESM8_ESM.docx (20 kb)
Table 1 (DOCX 20 kb)
10584_2015_1500_MOESM9_ESM.docx (18 kb)
Table 2 (DOCX 18 kb)


  1. ACI (2005) Arctic climate impact assessment. Cambridge University, CambridgeGoogle Scholar
  2. Andrewartha HG, Birch LC (1984) The ecological web: more on the distribution and abundance of animals. University of Chicago Press, ChicagoGoogle Scholar
  3. Araujo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47CrossRefGoogle Scholar
  4. Baars J, Neser S (1999) Past and present initiatives on the biological control of Lantana camara (Verbenaceae) in South Africa. Afr Entomol Memoir 1:21–33Google Scholar
  5. Baker RHA, Sansford CE, Jarvis CH et al (2000) The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agric Ecosyst Environ 82:57–71CrossRefGoogle Scholar
  6. Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:250–269CrossRefGoogle Scholar
  7. Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities. Blackwell Science Publications, OxfordCrossRefGoogle Scholar
  8. Bell CE, Wilen CA, Stanton AE (2003) Invasive plants of horticultural origin. HortSci 38:14–16Google Scholar
  9. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69CrossRefGoogle Scholar
  10. Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589CrossRefGoogle Scholar
  11. Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Evol Syst 27:597–623CrossRefGoogle Scholar
  12. Caminade C, Kovats S, Rocklov J et al (2014) Impact of climate change on global malaria distribution. Proc Natl Acad Sci U S A 111:3286–3291CrossRefGoogle Scholar
  13. Cilliers CJ, Neser S (1991) Biological control of Lantana camara (Verbenaceae) in South Africa. Agric Ecosyst Environ 37:57–75CrossRefGoogle Scholar
  14. Clarke LE, Edmonds JA, Jacoby HD et al. (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Subreport 2.1a of Synthesis and Assessment Product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research, Washington DCGoogle Scholar
  15. Clements DR, DiTommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240CrossRefGoogle Scholar
  16. Cohen J, Ernst K, Lindblade K et al (2010) Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands. Malar J 9:328–338CrossRefGoogle Scholar
  17. Day MD, Broughton S, Hannan-Jones MA (2003) Current distribution and status of Lantana camara and its biological control agents in Australia, with recommendations for further biocontrol introductions into other countries. Biocontrol News Inf 24:63N–76NGoogle Scholar
  18. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  19. Fouquet A, Ficetola GF, Haigh A et al (2010) Using ecological niche modelling to infer past, present and future environmental suitability for Leiopelma hochstetteri, an endangered New Zealand native frog. Biol Conserv 143:1375–1384CrossRefGoogle Scholar
  20. Gallien L, Douzet R, Pratte S et al (2012) Invasive species distribution models – how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136CrossRefGoogle Scholar
  21. Goncalves E, Herrera I, Duarte M et al (2014) Global invasion of Lantana camara: has the climatic niche been conserved across continents? PLoS ONE 9, e111468CrossRefGoogle Scholar
  22. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  23. Helmuth B, Kingsolver JG, Carrington E (2005) Biophysics, physiological ecology, and climate change: does mechanism matter? Annu Rev Physiol 67:177–201CrossRefGoogle Scholar
  24. Hijmans R, Schreuder M, De la Cruz J et al (1999) Using GIS to check co-ordinates of genebank accessions. Genet Resour Crop Evol 46:291–296CrossRefGoogle Scholar
  25. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  26. Holt R, Gaines M (1992) Analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evol Ecol 6:433–447CrossRefGoogle Scholar
  27. Huntley B, Barnard P, Altwegg R et al (2010) Beyond bioclimatic envelopes: dynamic species’ range and abundance modelling in the context of climatic change. Ecography 33:621–626Google Scholar
  28. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  29. Jafri S (1974) Flora of Pakistan. Available at:
  30. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350CrossRefGoogle Scholar
  31. Kriticos DJ, Sutherst RW, Brown JR et al (2003) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J Appl Ecol 40:111–124CrossRefGoogle Scholar
  32. Leprieur F, Beauchard O, Blanchet S et al (2008) Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biol 6, e322CrossRefGoogle Scholar
  33. Masui T, Matsumoto K, Hijioka Y et al (2011) An emission pathway for stabilization at 6 Wm−2 radiative forcing. Clim Chang 109:59–76CrossRefGoogle Scholar
  34. McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098CrossRefGoogle Scholar
  35. McNeely JA, Mooney HA, Neville LE et al. (2001) Global strategy on invasive alien species. IUCN on behalf of the Global Invasive Species Programme, Gland, Switzerland and Cambridge, UKGoogle Scholar
  36. Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756CrossRefGoogle Scholar
  37. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  38. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371CrossRefGoogle Scholar
  39. Peterson AT, Soberón J, Pearson RG et al. (2011) Ecological niches and geographic distributions. Monographs in Population Biology 49. Princeton University Press, Princeton, New Jersey, pp. 328Google Scholar
  40. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  41. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  42. Priyanka N, Joshi PK (2013) Effects of climate change on invasion potential distribution of Lantana camara. J Earth Sci Clim Chang 4:164–173Google Scholar
  43. Raes N, ter Steege H (2007) A null-model for significance testing of presence-only species distribution models. Ecography 30:727–736CrossRefGoogle Scholar
  44. Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533CrossRefGoogle Scholar
  45. Ramaswami G, Sukumar R (2013) Long-term environmental correlates of invasion by Lantana camara (verbenaceae) in a seasonally dry tropical forest. PLoS ONE 8, e76995CrossRefGoogle Scholar
  46. Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51:103–113CrossRefGoogle Scholar
  47. Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74:887–935CrossRefGoogle Scholar
  48. Riahi K, Rao S, Krey V et al (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57CrossRefGoogle Scholar
  49. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Chang 2:248–253CrossRefGoogle Scholar
  50. Roura-Pascual N, Suarez AV (2008) The utility of species distribution models to predict the spread of invasive ants (Hymenoptera: Formicidae) and to anticipate changes in their ranges in the face of global climate change. Myrmecological News 11:61–77Google Scholar
  51. Sanders RW (2006) Taxonomy of Lantana sect. Lantana (Verbenaceae): I.correct application of Lantana camara and associated names. SIDA 22:381–421Google Scholar
  52. Schmidt F, Persson A (2003) Comparison of DEM data capture and topographic wetness indices. Precis Agric 4:179–192CrossRefGoogle Scholar
  53. Schrag A, Konrad S, Miller S et al (2011) Climate-change impacts on sagebrush habitat and West Nile virus transmission risk and conservation implications for greater sage-grouse. Geojournal 76:561–575CrossRefGoogle Scholar
  54. Sharma GP, Raghubanshi AS, Singh JS (2005) Lantana invasion: an overview. Weed Biol Manag 5:157–165CrossRefGoogle Scholar
  55. Smith LS, Smith DA (1982) The naturalised Lantana camara complex in eastern Australia. Queensland Bot Bull 1:1–26Google Scholar
  56. Soberon J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10CrossRefGoogle Scholar
  57. Svenning JC, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol 96:1117–1127CrossRefGoogle Scholar
  58. Taylor S, Kumar L (2013) Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: a case study of Lantana camara L. in Queensland, Australia. J Environ Manag 114:414–422CrossRefGoogle Scholar
  59. Taylor KE, Stouffer RJ, Meehl GA (2012a) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  60. Taylor S, Kumar L, Reid N (2012b) Impacts of climate change and land-use on the potential distribution of an invasive weed: a case study of Lantana camara in Australia. Weed Res 52:391–401CrossRefGoogle Scholar
  61. Taylor S, Kumar L, Reid N et al (2012c) Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS ONE 7, e105500Google Scholar
  62. Thakur ML, Ahmad M, Thakur RK (1992) Lantana weed (Lantana camara var. aculeate Linn) and its possible management through natural insect pests in India. Indian Forester 118:466–488Google Scholar
  63. Thompson GD, Robertson MP, Webber BL et al (2011) Predicting the subspecific identity of invasive species using distribution models: Acacia saligna as an example. Divers Distrib 17:1001–1014CrossRefGoogle Scholar
  64. USGS (2009) HYDRO1k elevation derivative database. Cent. for Earth Resour. Obs. and Sci., Sioux Falls, S. D. Available at
  65. van Vuuren D, Edmonds J, Kainuma M et al (2011a) A special issue on the RCPs. Clim Chang 109:1–4CrossRefGoogle Scholar
  66. van Vuuren D, Stehfest E, den Elzen MJ et al (2011b) RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim Chang 109:95–116CrossRefGoogle Scholar
  67. Vardien W, Richardson DM, Foxcroft LC et al (2012) Invasion dynamics of Lantana camara L. (sensu lato) in South Africa. S Afr J Bot 81:81–94CrossRefGoogle Scholar
  68. Vorsino AE, Fortini LB, Amidon FA et al (2014) Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates. PLoS ONE 9, e102400CrossRefGoogle Scholar
  69. Warszawski L, Frieler K, Huber V et al (2014) The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc Natl Acad Sci U S A 111:3228–3232CrossRefGoogle Scholar
  70. Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324CrossRefGoogle Scholar
  71. Wildlife Conservation Society WCS (2005) Last of the Wild Project, Version 2, 2005 (LWP-2): Last of the Wild Dataset (Geographic). Palisades, NYGoogle Scholar
  72. Willis KJ, Whittaker RJ (2002) Species diversity–scale matters. Science 295:1245–1248CrossRefGoogle Scholar
  73. Zhang Q, Zhang Y, Peng S et al (2014) Climate warming may facilitate invasion of the exotic shrub Lantana camara. PLoS ONE 9, e105500CrossRefGoogle Scholar
  74. Zhu G-P, Rédei D, Kment P et al (2014) Effect of geographic background and equilibrium state on niche model transferability: predicting areas of invasion of Leptoglossus occidentalis. Biol Invasions 16:1069–1081CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Z. Qin
    • 1
    • 2
    • 3
  • J. E. Zhang
    • 1
    • 2
    • 3
  • A. DiTommaso
    • 4
  • R. L. Wang
    • 1
    • 2
    • 3
  • K. M. Liang
    • 1
    • 2
    • 3
  1. 1.The Department of Ecology, College of Natural Resources and EnvironmentSouth China Agricultural UniversityGuangzhou CityChina
  2. 2.Key Laboratory of Ecological Agriculture of Ministry of Agriculture of ChinaGuangzhou CityChina
  3. 3.Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education InstitutionsSouth China Agricultural UniversityGuangzhou CityChina
  4. 4.Section of Soil and Crop Sciences, School of Integrative Plant ScienceCornell UniversityIthacaUSA

Personalised recommendations