Skip to main content

The unseen uncertainties in climate change: reviewing comprehension of an IPCC scenario graph


The reports published by the Intergovernmental Panel on Climate Change (IPCC) are comprehensive assessments of the scientific knowledge and uncertainties surrounding climate projections. They combine well-formed language with supporting graphical evidence and have the objective to inform policymakers. One of the most discussed and widely distributed visual in these reports is the graph, showing the global surface temperature evolution for the 21st century as simulated by climate models for various emission scenarios, which is part of the Summary for Policymakers (SPM) and the Working Group I contribution to the Fourth Assessment Report (AR4). It displays two types of uncertainties, namely the socio-economic scenarios and response uncertainty due to imperfect knowledge and models. Through 43 in-depth interviews this graph and caption was empirically tested with a sample of people analogous to the SPM target audience. It was found that novice readers were unable to identify the two different types of uncertainties in this graph without substantial guidance. Instead they saw a great deal of uncertainty but falsely attributed it to the climate model(s) and ignored the scenario uncertainties. Our findings demonstrate how the choice of display can directly impact a reader’s perception of the scientific message. A failure to distinguish between these two types of uncertainties could lead to an overestimate of the response uncertainties, and an underestimation of socio-economic choices. We test this assumption and identify the difficulties non-technical audiences have with this graph and how this could inevitably impede its value as a decision support tool.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    “When the collection of new data does not shed any further light on the issue under investigation” (Mason 2010, p.1)

  2. 2.

    Qualitative data analysis tool, ATLAS for Mac OS X version, see product site

  3. 3.

    Interview statements are cataloged along with the participant’s role and/or education level as well as an identification number; the latter can be cross-referenced with the Online Resource material.


  1. Ancker JS, Senathirajah Y, Kukafka R, Starren JB (2006) Design features of graphs in health risk communication: a systematic review. J Am Med Inform Assoc 13:608–618. doi:10.1197/Jamia.M2115

    Article  Google Scholar 

  2. Bertin J (2010) [Semiologie graphique. English] Semiology of graphics: diagrams, networks, maps / Jacques Bertin; translated by William J. Berg. 1 edn. Esri Press

  3. Boukhelifa N, Bezerianos A, Isenberg T, Fekete JD (2012) Evaluating sketchiness as a visual variable for the depiction of qualitative uncertainty. IEEE Trans Vis Comp Graph 18:2769–2778

    Article  Google Scholar 

  4. Budescu DV, Broomell S, Por HH (2009) Improving communication of uncertainty in the reports of the intergovernmental panel on climate change. Psychol Sci 20:299–308. doi:10.1111/J.1467-9280.2009.02284.X

    Article  Google Scholar 

  5. Canham M, Hegarty M (2010) Effects of knowledge and display design on comprehension of complex graphics. Learn Instr 20:155–166. doi:10.1016/J.Learninstruc.2009.02.014

    Article  Google Scholar 

  6. CCSP (2009) Best practice approaches for characterizing, communicating, and incorporating scientific uncertainty in decisionmaking. [M. Granger Morgan (Lead Author), Hadi Dowlatabadi, Max Henrion, David Keith, Robert Lempert, Sandra McBride, Mitchell Small, and Thomas Wilbanks (Contributing Authors)]

  7. Cleveland WS, Mcgill R (1985) Graphical perception and graphical methods for analyzing scientific-data. Science 229:828–833. doi:10.1126/Science.229.4716.828

    Article  Google Scholar 

  8. Fischhoff B (2011) Applying the science of communication to the communication of science. Clim Chang 108:701–705. doi:10.1007/S10584-011-0183-9

    Article  Google Scholar 

  9. Fischhoff B (2013) The sciences of science communication. Proc Natl Acad Sci U S A 110:14033–14039. doi:10.1073/Pnas.1213273110

    Article  Google Scholar 

  10. Garcia-Retamero R, Okan Y, Cokely ET (2012) Using visual aids to improve communication of risks about health: a review Sci World J doi: Artn 562637

  11. Glazer N (2011) Challenges with graph interpretation: a review of the literature. Stud Sci Educ 47:183–210. doi:10.1080/03057267.2011.605307

    Article  Google Scholar 

  12. Guzman E, Schiller J (2011) How does this look? In: C Stephanidis (Ed) Desirability methods for evaluating visual design. Posters, Part I, HCII 2011, CCIS 173, Springer-Verlag Berlin Heidelberg, pp 123–127

  13. Hegarty M (2011) The cognitive science of visual-spatial displays: implications for design. Top Cogn Sci 3:446–474. doi:10.1111/J.1756-8765.2011.01150.X

    Article  Google Scholar 

  14. Hegarty M, Canham MS, Fabrikant SI (2010) Thinking about the weather: how display salience and knowledge affect performance in a graphic inference task. J Exp Psychol Learn Mem Cogn 36:37–53. doi:10.1037/A0017683

    Article  Google Scholar 

  15. IPCC (2013) Working goup 1 fact sheet. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. Accessed 10 January 2015

  16. Jonassen R, Pielke R (2011) Improving conveyance of uncertainties in the findings of the IPCC. Clim Chang 108:745–753. doi:10.1007/S10584-011-0185-7

    Article  Google Scholar 

  17. Kandlikar M, Risbey J, Dessai S (2005) Representing and communicating deep uncertainty in climate-change assessments. CR Geosci 337:443–455. doi:10.1016/J.Crte.2004.10.010

    Article  Google Scholar 

  18. Kinkeldey C, MacEachren AM, Schiewe J (2014) How to assess visual communication of uncertainty? A systematic review of geospatial uncertainty visualisation user studies. Cartogr J 51:372–386. doi:10.1179/1743277414y.0000000099

    Article  Google Scholar 

  19. Kosslyn SM (1989) Understanding charts and graphs. Appl Cogn Psychol 3:185–226. doi:10.1002/Acp.2350030302

    Article  Google Scholar 

  20. Mason M (2010) Sample size and saturation in PhD studies using qualitative interviews [63 paragraphs] Forum Qualitative Sozialforschung / Forum: Qualitative Social Research 11(3), Art. 8

  21. Mastrandrea MD et al (2011) The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Clim Chang 108:675–691. doi:10.1007/S10584-011-0178-6

    Article  Google Scholar 

  22. Morgan MG, Mellon C (2011) Certainty, uncertainty, and climate change. Clim Chang 108:707–721. doi:10.1007/S10584-011-0184-8

    Article  Google Scholar 

  23. Moser SC (2010) Communicating climate change: history, challenges, process and future directions. WIREs Clim Chang 1:31–53. doi:10.1002/Wcc.011

    Article  Google Scholar 

  24. Moss RH (2011) Reducing doubt about uncertainty: guidance for IPCC's third assessment. Clim Chang 108:641–658. doi:10.1007/S10584-011-0182-X

    Article  Google Scholar 

  25. O'Neill SJ, Smith N (2014) Climate change and visual imagery. WIREs Clim Chang 5:73–87. doi:10.1002/Wcc.249

    Article  Google Scholar 

  26. Patt AG, Weber EU (2014) Perceptions and communication strategies for the many uncertainties relevant for climate policy. WIREs Clim Chang 5:219–232. doi:10.1002/Wcc.259

    Article  Google Scholar 

  27. Pidgeon N, Fischhoff B (2011) The role of social and decision sciences in communicating uncertain climate risks. Nat Clim Chang 1:35–41. doi:10.1038/Nclimate1080

    Article  Google Scholar 

  28. Rabinovich A, Morton TA (2012) Unquestioned answers or unanswered questions: beliefs about science guide responses to uncertainty in climate change risk communication. Risk Anal 32:992–1002. doi:10.1111/J.1539-6924.2012.01771.X

    Article  Google Scholar 

  29. Schneider B (2012) Climate model simulation visualization from a visual studies perspective. WIREs Clim Chang 3:185–193. doi:10.1002/Wcc.162

    Article  Google Scholar 

  30. Shah P, Hoeffner J (2002) Review of graph comprehension research: implications for instruction. Educ Psychol Rev 14:47–69. doi:10.1023/A:1013180410169

    Article  Google Scholar 

  31. Shah P, Mayer RE, Hegarty M (1999) Graphs as aids to knowledge construction: signaling techniques for guiding the process of graph comprehension. J Educ Psychol 91:690–702. doi:10.1037//0022-0663.91.4.690

    Article  Google Scholar 

  32. Stephens EM, Edwards TL, Demeritt D (2012) Communicating probabilistic information from climate model ensembles-lessons from numerical weather prediction. WIREs Clim Chang 3:409–426. doi:10.1002/Wcc.187

    Article  Google Scholar 

  33. Tufte ER (2001) The visual display of quantitative information. 2 edn. Graphics Press LLC

  34. von Winterfeldt D (2013) Bridging the gap between science and decision making. Proc Natl Acad Sci U S A 110:14055–14061. doi:10.1073/Pnas.1213532110

    Article  Google Scholar 

  35. Yohe G, Oppenheimer M (2011) Evaluation, characterization, and communication of uncertainty by the intergovernmental panel on climate change-an introductory essay. Clim Chang 108:629–639. doi:10.1007/S10584-011-0176-8

    Article  Google Scholar 

Download references


The Institute for Atmospheric and Climate Science and the Institute for Environmental Decisions at the ETH Zurich, Switzerland jointly supported the author of this paper.

Author information



Corresponding author

Correspondence to Rosemarie McMahon.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 43 kb)


(DOCX 140 kb)


(DOCX 144 kb)


(DOCX 165 kb)


(DOCX 108 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McMahon, R., Stauffacher, M. & Knutti, R. The unseen uncertainties in climate change: reviewing comprehension of an IPCC scenario graph. Climatic Change 133, 141–154 (2015).

Download citation


  • Content Knowledge
  • Climate Science
  • Graph Schema
  • Response Uncertainty
  • Scenario Uncertainty