Skip to main content

Increased record-breaking precipitation events under global warming

An Erratum to this article was published on 05 August 2015

Abstract

In the last decade record-breaking rainfall events have occurred in many places around the world causing severe impacts to human society and the environment including agricultural losses and floodings. There is now medium confidence that human-induced greenhouse gases have contributed to changes in heavy precipitation events at the global scale. Here, we present the first analysis of record-breaking daily rainfall events using observational data. We show that over the last three decades the number of record-breaking events has significantly increased in the global mean. Globally, this increase has led to 12 % more record-breaking rainfall events over 1981–2010 compared to those expected in stationary time series. The number of record-breaking rainfall events peaked in 2010 with an estimated 26 % chance that a new rainfall record is due to long-term climate change. This increase in record-breaking rainfall is explained by a statistical model which accounts for the warming of air and associated increasing water holding capacity only. Our results suggest that whilst the number of rainfall record-breaking events can be related to natural multi-decadal variability over the period from 1901 to 1980, observed record-breaking rainfall events significantly increased afterwards consistent with rising temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alexander LV et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111(D5):D05109. doi:10.1029/2005JD006290

    Google Scholar 

  2. Allen M (1997) Optimal filtering in singular spectrum analysis. Phys Lett A 234:419–428. doi:10.1016/S0375-9601(97)00559-8

    Article  Google Scholar 

  3. Anderson A, Kostinski A (2011) Evolution and distribution of record-breaking high and low monthly mean temperatures. J Appl Meteorol Climatol 50(9):1859–1871. doi:10.1175/JAMC-D-10-05025.1

    Article  Google Scholar 

  4. Benestad R (2003) How often can we expect a record event? Clim Res 25:3–13

    Article  Google Scholar 

  5. Benestad RE (2004) Record-values, non-stationarity tests and extreme value distributions. Glob Planet Chang 44(1–4):11–26

    Article  Google Scholar 

  6. Benestad RE (2013) Association between trends in daily rainfall percentiles and the global mean temperature. J Geophys Res Atmos 118(19):10,802–10,810. doi:10.1002/jgrd.50814

    Article  Google Scholar 

  7. Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6(3):181–185. doi:10.1038/ngeo1731

    Article  Google Scholar 

  8. Caballero R (2005) The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys Res Lett 32(2):L02705. doi:10.1029/2004GL021581

    Google Scholar 

  9. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496. doi:10.1038/nclimate1452

    Google Scholar 

  10. Coumou D, Robinson A, Rahmstorf S (2013) Global increase in record-breaking monthly-mean temperatures. Clim Chang 118(3–4):771–782. doi:10.1007/s10584-012-0668-1

    Article  Google Scholar 

  11. Dai A, Wigley T (2000) Global patterns of ENSO‐induced precipitation. Geophys Res Lett 27(9):1283–1286

    Article  Google Scholar 

  12. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Caesar J (2013a) Global land-based datasets for monitoring climatic extremes. Bull Am Meteorol Soc 94(7):997–1006. doi:10.1175/BAMS-D-12-00109.1

    Article  Google Scholar 

  13. Donat MG et al (2013b) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos 118(5):2098–2118. doi:10.1002/jgrd.50150

    Article  Google Scholar 

  14. Field CB, Barros V, Stocker TF, Dahe Q (2012) In: Field CB, Barros V, Stocker TF, Dahe Q (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  15. Frei C, Schär C (2001) Detection probability of trends in rare events: theory and application to heavy precipitation in the alpine region. J Clim 14(7):1568–1584. doi:10.1175/1520-0442(2001)014<1568:DPOTIR>2.0.CO;2

    Article  Google Scholar 

  16. García J, Gallego MC, Serrano A, Vaquero J (2007) Trends in block-seasonal extreme rainfall over the Iberian Peninsula in the second half of the twentieth century. J Clim 20(1):113–130. doi:10.1175/JCLI3995.1

    Article  Google Scholar 

  17. Golyandina N, Nekrutkin VV, Zhigljavsky AA (2001) Analysis of time series structure: SSA and related techniques

  18. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int J Climatol 34(3):623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  19. Hawcroft MK, Shaffrey LC, Hodges KI, Dacre HF (2012) How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys Res Lett 39(24):L24809. doi:10.1029/2012GL053866

    Google Scholar 

  20. Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P (2012) On the increased frequency of Mediterranean drought. J Clim 25(6):2146–2161. doi:10.1175/JCLI-D-11-00296.1

    Article  Google Scholar 

  21. Hurrell JW (1995) Decadal trends in the north atlantic oscillation: regional temperatures and precipitation. Science 269(24):676–679. doi:10.1126/science.269.5224.676

    Article  Google Scholar 

  22. Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20(8):1419–1444. doi:10.1175/JCLI4066.1

    Article  Google Scholar 

  23. Kiktev D, Sexton DMH, Alexander L, Folland CK (2003) Comparison of modeled and observed trends in indices of daily climate extremes. J Clim 16(22):3560–3571. doi:10.1175/1520-0442(2003)016<3560:COMAOT>2.0.CO;2

    Article  Google Scholar 

  24. Kiktev D, Caesar J, Alexander LV, Shiogama H, Collier M (2007) Comparison of observed and multimodeled trends in annual extremes of temperature and precipitation. Geophys Res Lett 34(April):2–6. doi:10.1029/2007GL029539

    Google Scholar 

  25. Kwarteng AY, Dorvlo S, Vijaya GT (2009) Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. 617:605–617. doi:10.1002/joc

  26. Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys Res Lett 36:1–5. doi:10.1029/2009GL040736

    Google Scholar 

  27. Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470(7334):378–381. doi:10.1038/nature09763

    Article  Google Scholar 

  28. NOAA National Climatic Data Center (2010), State of the climate: global analysis for annual 2010, Publ. online December 2010, (July 2009), http://www.ncdc.noaa.gov/sotc/global/2010/13

  29. Pall P, Allen MR, Stone DA (2007) Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim Dyn 28(4):351–363. doi:10.1007/s00382-006-0180-2

    Article  Google Scholar 

  30. Pavan V, Tomozeiu R, Cacciamani C, Di Lorenzo M (2008) Daily precipitation observations over Emilia-Romagna: mean values and extremes. Int J Climatol 28(15):2065–2079. doi:10.1002/joc.1694

    Article  Google Scholar 

  31. Rahimzadeh F, Asgari A, Fattahi E (2009) Variability of extreme temperature and precipitation in Iran during recent decades. 343:329–343. doi:10.1002/joc

  32. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci U S A 108(44):17905–17909. doi:10.1073/pnas.1101766108

    Article  Google Scholar 

  33. Redner S, Petersen MR (2005) On the role of global warming on the statistics of record-breaking temperatures. Phys Rev E 11. doi:10.1103/PhysRevE.74.061114

  34. Rogers JC (1985) Atmospheric circulation changes associated with the warming over the Northern North Atlantic in the 1920s. J Clim Appl Meteorol 24(12):1303–1310. doi:10.1175/1520-0450(1985)024<1303:ACCAWT>2.0.CO;2

    Article  Google Scholar 

  35. Scaife AA et al (2011) Climate change projections and stratosphere–troposphere interaction. Clim Dyn 38(9–10):2089–2097. doi:10.1007/s00382-011-1080-7

    Google Scholar 

  36. Seneviratne SI, Nicholls N, Easterling D et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, pp 109–230

  37. Shiu C-J, Liu SC, Fu C, Dai A, Sun Y (2012) How much do precipitation extremes change in a warming climate? Geophys Res Lett 39(17). doi:10.1029/2012GL052762

  38. Singh MS, O’Gorman PA (2014) Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys Res Lett. doi:10.1002/2014GL061222

    Google Scholar 

  39. Trenberth K (2011) Changes in precipitation with climate change. Clim Res 47(1):123–138. doi:10.3354/cr00953

    Article  Google Scholar 

  40. Trenberth KE (2012) Framing the way to relate climate extremes to climate change. Clim Chang. doi:10.1007/s10584-012-0441-5

    Google Scholar 

  41. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/BAMS-84-9-1205, +1161

    Article  Google Scholar 

  42. Trenberth KE, Jones PD, Ambenje P et al (2007) Obervations: surface and atmospheric climate change. In: Solomon S, Dahe Q, Manning MR, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

  43. Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26(11):3904–3918. doi:10.1175/JCLI-D-12-00502.1

    Article  Google Scholar 

  44. Wilks DS (1997) Resampling hypothesis tests for autocorrelated fields. J Clim 10:65–82. doi:10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2

    Article  Google Scholar 

  45. Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448(7152):461–465. doi:10.1038/nature06025

    Article  Google Scholar 

  46. Zhang X, Wan H, Zwiers FW, Hegerl GC, Min S-K (2013) Attributing intensification of precipitation extremes to human influence. Geophys Res Lett 40(19):5252–5257. doi:10.1002/grl.51010

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Met Office Hadley Center, GHCN, and CRU for making their data available. The work was supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (11 II 093 Global A SIDS and LDCs), by the German research Foundation (CO994/2-1), and the German Federal Ministry of Education and Research (01LN1304A).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jascha Lehmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4259 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lehmann, J., Coumou, D. & Frieler, K. Increased record-breaking precipitation events under global warming. Climatic Change 132, 501–515 (2015). https://doi.org/10.1007/s10584-015-1434-y

Download citation

Keywords

  • Precipitation Extreme
  • Boreal Winter
  • Natural Climate Variability
  • Maximum Daily Precipitation
  • Annual Maximum Daily Precipitation