Climatic Change

, Volume 130, Issue 4, pp 491–503 | Cite as

Estimation of urban water supply issues at the local scale: a participatory approach

  • Christelle Legay
  • Geneviève Cloutier
  • Salem Chakhar
  • Florent Joerin
  • Manuel J. Rodriguez


Predicted climate change may significantly affect drinking water supply in urban areas. Local water stakeholders facing climate change will have to deal with uncertain information and unexpected events. To address this lack of data, the knowledge and experience of practitioners might be used to assess the potential impacts of climate change on different issues, including drinking water supply. This paper proposes a participatory approach to identify local issues associated with drinking water supply (from source to tap) in a climate change context. This approach relies on the experience and knowledge of local practitioners. The proposed approach was applied to the Québec City metropolitan area (Province of Quebec, Canada). It is based on assignment examples (in this case, a selected set of districts from the study territory) in order to generalize application to the entire territory. This approach helps stakeholders to rationally consider different dimensions and the complexity of drinking water supply.


Focus Group Local Actor Drinking Water Supply Relative Hazard Meteorological Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Ouranos Consortium ( for supporting this study under the Climate Change and Urban Transformation Research-Action Project. The authors wish also to express their gratitude to Natural Resources Canada ( and the Fonds Vert Québec ( The authors would also like to thank Martial Labarthe, Dominique Viens, Jean-Philippe Labbé-Tremblay, Catherine Dubois and Martin Laliberté, our colleagues and members of the Action-Research Project. Finally, authors are indebted to all the local actors who took part in the different meeting sessions for their unfailing and crucial feedback, and to the people who contributed to the data collection.


  1. Bates BC, Kundzewics ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. technical paper of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change (IPCC), Geneva, SwitzerlandGoogle Scholar
  2. Canadian Council of Professional Engineers (2008) Adapting to climate change: Canada’s first national engineering vulnerability assessment of public infrastructure. ON, CanadaGoogle Scholar
  3. Chakhar S, Saad I (2012) Dominance-based rough set approach for groups in multicriteria classification problems. Decis Support Syst 54:372–380. doi: 10.1016/j.dss.2012.05.050 CrossRefGoogle Scholar
  4. Cloutier G, Joerin F (2012) Tackling climate change adaptation at the local level through community participation. In: Holt WG (ed) Research in urban sociology, vol 12. Emerald Group Publishing Limited, Bingley, pp 51–73Google Scholar
  5. Delpla I, Jung AV, Baures E, Clement M, Thomas O (2009) Impacts of climate change on surface water quality in relation to drinking water production. Environ Int 35:1225–1233. doi: 10.1016/j.envint.2009.07.001 CrossRefGoogle Scholar
  6. Dias L, Mousseau V, Figueira J, Climaco J (2002) An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI. Eur J Oper Res 138:332–348. doi: 10.1016/S0377-2217(01)00250-8 CrossRefGoogle Scholar
  7. Environnement Canada (2013) Normales et moyennes climatiques au Canada 1971–2000. Service météorologique du Canada. Accessed 11 December 2013
  8. Lemmen DS, Warren FJ (eds) (2004) Climate change impacts and adaptation: a canadian perspective. Government of Canada, ON, CanadaGoogle Scholar
  9. Greco S, Matarazzo B, Slowinski R (2001) Rough sets theory for multicriteria decision analysis. Eur J Oper Res 129:1–47. doi: 10.1016/S0377-2217(00)00167-3 CrossRefGoogle Scholar
  10. Haase D (2013) Participatory modelling of vulnerability and adaptive capacity in flood risk management. Nat Hazards 67:77–97. doi: 10.1007/s11069-010-9704-5 CrossRefGoogle Scholar
  11. Hallegatte S (2009) Strategies to adapt to an uncertain climate change. Glob Environ Chang 19:240–247. doi: 10.1016/j.gloenvcha.2008.12.003 CrossRefGoogle Scholar
  12. Hengeveld H, Whitewood B, Fergusson A (2005) An introduction to climate change: a canadian perspective. ON, CanadaGoogle Scholar
  13. Hersh R, Wernstedt K (2002) Gauging the vulnerability of local water systems to extreme events. J Environ Plan Manag 45:341–361. doi: 10.1080/09640560220133397 CrossRefGoogle Scholar
  14. Hung H-C, Chen L-Y (2013) Incorporating stakeholders’ knowledge into assessing vulnerability to climatic hazards: application to the river basin management in Taiwan. Clim Chang 120:491–507. doi: 10.1007/s10584-013-0819-z CrossRefGoogle Scholar
  15. ISSMGE (2004) Glossary of risk assessment terms – Version 1. Technical Committee on Risk Management (TC32) of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE). Accessed 11 December 2014
  16. Kreutzwiser R, Moraru L, de Loë R, Mills B, Schaefer K (2003) Drought sensitivity of municipal water supply systems in Ontario. Great Lakes Geogr 9:59–70Google Scholar
  17. Mailhot A, Duchesne S (2005) Impacts et enjeux liés aux changements climatiques en matière de gestion des eaux en milieu urbain. Vertigo – La revue en sciences de l’environnement Hors-série 2:1–9. doi: 10.4000/vertigo.1931
  18. Mailhot A, Duchesne S, Caya D, Talbot G (2007) Assessment of future change in Intensity-Duration-Frequency (IDF) curves for southern Quebec using the Canadian Regional Climate Model (CRCM). J Hydrol 347:197–210. doi: 10.1016/j.jhydrot.2007.09.019 CrossRefGoogle Scholar
  19. Meuleman AFM, Cirkel G, Zwolsman GJJ (2007) When climate change is a fact! Adaptive strategies for drinking water production in a changing natural environment. Water Sci Technol 56:137–144. doi: 10.2166/Wst.2007.545 CrossRefGoogle Scholar
  20. Mittal N, Mishra A, Singh R (2013) Combining climatological and participatory approaches for assessing changes in extreme climatic indices at regional scale. Clim Chang 119:603–615. doi: 10.1007/s10584-013-0760-1 CrossRefGoogle Scholar
  21. Morgan DL (1997) Focus groups as qualitative research, 2nd edn. Sage, LondonGoogle Scholar
  22. Mousseau V, Slowinski R (1998) Inferring an ELECTRE TRI model from assignment examples. J Glob Optim 12:157–174. doi: 10.1023/A:1008210427517 CrossRefGoogle Scholar
  23. Ouranos (2010) Savoir s’adapter aux changements climatiques. Montréal, QC, CanadaGoogle Scholar
  24. Pampalon R, Gamache P, Hamel D (2010) Indice de défavorisation matérielle et sociale du Québec: suivi méthodologique de 1991 à 2006. Publication de l’Institut Nationale de Santé du Publique du Québec, CanadaGoogle Scholar
  25. Picketts IM, Curry J, Dery SJ, Cohen SJ (2013) Learning with practitioners: climate change adaptation priorities in a Canadian community. Clim Chang 118:321–337. doi: 10.1007/s10584-012-0653-8 CrossRefGoogle Scholar
  26. US EPA (2011) Climate change vulnerability assessments: four case studies of water utility practices. Global Change Research Program, National Center for Environmental Assessment, United States Environmental Protection Agency (US EPA), Washington, DC, USAGoogle Scholar
  27. Vachon G, Chouinard MN, Cloutier G, Dubois C, Després C (2013) Adapting cities to climate change: an action-research approach to imagining design solutions, measuring their feasibility and acceptability, and informing decision. Enquiry/ARCC J Archit Res 10:14–28Google Scholar
  28. Yang C, Huang J-B (2000) A decision model for IS outsourcing. Int J Inf Manag 20:225–239. doi: 10.1016/S0268-4012(00)00007-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Christelle Legay
    • 1
  • Geneviève Cloutier
    • 1
  • Salem Chakhar
    • 2
  • Florent Joerin
    • 1
    • 3
  • Manuel J. Rodriguez
    • 1
  1. 1.Centre de Recherche en Aménagement et DéveloppementUniversité LavalQuébecCanada
  2. 2.Portsmouth Business SchoolUniversity of PortsmouthPortsmouthUK
  3. 3.Haute École d’Ingénierie et de Gestion du Canton de Vaud - YverdonYverdon-les-BainsSwitzerland

Personalised recommendations