Emission metrics and sea level rise


Here we present two new metrics used for comparing climate impacts of emissions of different climate forcers: the Global Sea level rise Potential (GSP) and the Integrated Global Sea level rise Potential (IGSP). The GSP represents the Sea Level Rise (SLR) at a given time horizon due to an emission pulse of a forcer; the IGSP is similar but represents the time integrated SLR up to a given point in time. The GSP and IGSP are presented relative to the SLR caused by a comparable emission pulse of carbon dioxide. The metrics are assessed using an Upwelling-Diffusion Energy Balance Model (UDEBM). We focus primarily on the thermosteric part of SLR, denoted GSPth. All of the examined climate forcers – even black carbon, a very Short-Lived Climate Forcer (SLCF) – have considerable influence on the thermosteric SLR on the century time scale. For a given time horizon and forcer, GSPth lies in between the corresponding metric values obtained using Global Warming Potential (GWP) and Global Temperature change Potential (GTP), whereas IGSPth ends up in the opposite end to GTP in the spectrum of compared metrics. GSPth and IGSPth are more sensitive for SLCFs than for the long-lived Greenhouse Gases (GHGs) to changes in the parameterization of the model (under the time horizons considered here).

We also use a Semi-Empirical (SE) model to estimate the full SLR, and corresponding GSPSE and IGSPSE, as alternatives to the thermosteric approach. For SLCFs, GSPSE is greater than GSPth for all time horizons considered, while the opposite holds for long-lived GHGs such as SF6.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    The scenarios are the Representative Concentration Pathways (RCP) (Meinshausen et al. 2011b).

  2. 2.

    These estimates are from process-based models. Semi-empirical models suggest 21st-century SLR could come close to two meters (Rahmstorf 2009).

  3. 3.

    See Fig. OR1 for a schematic illustration of the model.

  4. 4.

    Using smaller sized pulses such as 1 kg would have given results that are linearly scaled with those presented in here since the model is linear.

  5. 5.

    IGTP has for clarity been excluded from Table 1.

  6. 6.

    An approximation of thermosteric GSP, assuming a constant thermal expansion coefficient.


  1. Azar C, Johansson DJA (2012) On the relationship between metrics to compare greenhouse gases & ;–; the case of IGTP, GWP and SGTP. Earth Syst Dyn 3:139–147. doi:10.5194/esd-3-139-2012

    Article  Google Scholar 

  2. Baker MB, Roe GH (2009) The Shape of Things to Come: Why Is Climate Change So Predictable? J Clim 22:4574–4589. doi:10.1175/2009JCLI2647.1

    Article  Google Scholar 

  3. Church JA, Clark PU, Cazenave A, et al. (2013) Sea Level Change. In: Climate Change 2013: The physical science basis. Contribution of working group 1 to the fifth assessment report of the IPCC. [Stocker TF, Dahe Q, Plattner G-K, et al.]

  4. Fisher DA, Hales CH, Wang W-C et al (1990) Model calculations of the relative effects of CFCs and their replacements on global warming. Nature 344:513–516. doi:10.1038/344513a0

    Article  Google Scholar 

  5. Fuglestvedt JS, Berntsen TK, Godal O et al (2003) Metrics of Climate Change: Assessing Radiative Forcing and Emission Indices. Clim Chang 58:267–331. doi:10.1023/A:1023905326842

    Article  Google Scholar 

  6. Fuglestvedt JS, Shine KP, Berntsen T et al (2010) Transport impacts on atmosphere and climate: Metrics. Atmos Environ 44:4648–4677. doi:10.1016/j.atmosenv.2009.04.044

    Article  Google Scholar 

  7. Gill AE (1982) Atmosphere–ocean dynamics. Academic press

  8. Gillett NP, Matthews HD (2010) Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ Res Lett 5:034011

    Article  Google Scholar 

  9. Hoffert MI, Callegari AJ, Hsieh C-T (1980) The role of deep sea heat storage in the secular response to climatic forcing. J Geophys Res Oceans 85:6667–6679. doi:10.1029/JC085iC11p06667

    Article  Google Scholar 

  10. Hu A, Xu Y, Tebaldi C et al (2013) Mitigation of short-lived climate pollutants slows sea-level rise. Nat Clim Chang 3:730–734. doi:10.1038/nclimate1869

    Article  Google Scholar 

  11. Johansson DJA (2011) Temperature stabilization, ocean heat uptake and radiative forcing overshoot profiles. Clim Chang 108:107–134. doi:10.1007/s10584-010-9969-4

    Article  Google Scholar 

  12. Johansson DJA (2012) Economics- and physical-based metrics for comparing greenhouse gases. Clim Chang 110:123–141. doi:10.1007/s10584-011-0072-2

    Article  Google Scholar 

  13. Jones PD, Lister DH, Osborn TJ, et al. (2012) Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research: Atmospheres (1984–2012) 117:

  14. Joos F, Roth R, Fuglestvedt JS et al (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13:2793–2825. doi:10.5194/acp-13-2793-2013

    Article  Google Scholar 

  15. Kriegler E (2005) Imprecise Probability Analysis for Integrated Assessment of Climate Change.

  16. Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature 344:529–531. doi:10.1038/344529a0

    Article  Google Scholar 

  17. Lenton TM (2011) Beyond 2 °C: redefining dangerous climate change for physical systems. Wiley Interdiscip Rev Clim Chang 2:451–461. doi:10.1002/wcc.107

    Article  Google Scholar 

  18. Levermann A, Clark PU, Marzeion B et al (2013) The multimillennial sea-level commitment of global warming. Proc Natl Acad Sci 110:13745–13750

    Article  Google Scholar 

  19. Levitus S (1982) Climatological atlas of the world ocean. NOAA Prof. Pap. 13:

  20. Levitus S, Antonov JI, Boyer TP et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39, L10603

    Article  Google Scholar 

  21. Li C, von Storch JS, Marotzke J (2012) Deep-ocean heat uptake and equilibrium climate response. Climate Dynamics 1–16

  22. Manne AS, Richels RG (2001) An alternative approach to establishing trade-offs among greenhouse gases. Nature 410:675–677. doi:10.1038/35070541

    Article  Google Scholar 

  23. Meinshausen M, Raper SCB, Wigley TML (2011a) Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration. Atmos Chem Phys 11:1417–1456. doi:10.5194/acp-11-1417-2011

    Article  Google Scholar 

  24. Meinshausen M, Smith SJ, Calvin K et al (2011b) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241

    Article  Google Scholar 

  25. Myhre G, Shindell D, Bréon F-M, et al. (2013) Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The physical science basis. Contribution of working group 1 to the fifth assessment report of the IPCC. [Stocker TF, Dahe Q, Plattner G-K, et al.]

  26. Olivié D, Stuber N (2010) Emulating AOGCM results using simple climate models. Clim Dyn 35:1257–1287. doi:10.1007/s00382-009-0725-2

    Article  Google Scholar 

  27. O’Neill BC (2000) The jury is still out on global warming potentials. Clim Chang 44:427–443

    Article  Google Scholar 

  28. Peters GP, Aamaas B, Berntsen T, Fuglestvedt JS (2011) The integrated global temperature change potential (iGTP) and relationships between emission metrics. Environ Res Lett 6:044021. doi:10.1088/1748-9326/6/4/044021

    Article  Google Scholar 

  29. Plattner G-K, Stocker T, Midgley P et al (2009) IPCC expert meeting on the science of alternative metrics. Meeting report, IPCC, Geneva (CH)

    Google Scholar 

  30. Rahmstorf S, Perrette M, Vermeer M (2012) Testing the robustness of semi-empirical sea level projections. Clim Dyn 1–15

  31. Reisinger A, Meinshausen M, Manning M, Bodeker G (2010) Uncertainties of global warming metrics: CO2 and CH4. Geophysical Research Letters 37:n/a–n/a. doi: 10.1029/2010GL043803

  32. Rodhe H (1990) A Comparison of the Contribution of Various Gases to the Greenhouse Effect. Science 248:1217–1219. doi:10.1126/science.248.4960.1217

    Article  Google Scholar 

  33. Schaeffer M, Hare W, Rahmstorf S, Vermeer M (2012) Long-term sea-level rise implied by 1.5 C and 2 C warming levels. Nature Climate Change

  34. Shine KP, Derwent RG, Wuebbles DJ, Morcrette JJ (1990) Radiative forcing of climate. In the first assessment report of the IPCC. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  35. Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases. Clim Chang 68:281–302. doi:10.1007/s10584-005-1146-9

    Article  Google Scholar 

  36. Smith SJ, Wigley ML (2000) Global warming potentials: 1. Climatic implications of emissions reductions. Clim Chang 44:445–457

    Article  Google Scholar 

  37. Sriver RL, Urban NM, Olson R, Keller K (2012) Toward a physically plausible upper bound of sea-level rise projections. Clim Chang 115:893–902. doi:10.1007/s10584-012-0610-6

    Article  Google Scholar 

  38. Stenchikov G, Delworth TL, Ramaswamy V et al (2009) Volcanic signals in oceans. J Geophys Res. doi:10.1029/2008JD011673

    Google Scholar 

  39. Tanaka K, O’Neill BC, Rokityanskiy D et al (2009) Evaluating global warming potentials with historical temperature. Clim Chang 96:443–466

    Article  Google Scholar 

  40. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106:21527–21532

    Article  Google Scholar 

  41. Wigley TML, Raper SCB (2005) Extended scenarios for glacier melt due to anthropogenic forcing. Geophysical research letters 32:L05704

  42. Wuebbles DJ, Jain AK, Patten KO, Grant KE (1995) Sensitivity of direct global warming potentials to key uncertainties. Clim Chang 29:265–297. doi:10.1007/BF01091865

    Article  Google Scholar 

  43. Xie S-P, Lu B, Xiang B (2013) Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat Geosci. doi:10.1038/ngeo1931

    Google Scholar 

Download references


We thank Paulina Essunger and two anonymous reviewers for valuable comments. Funding from the Swedish Energy Agency and Carl Bennet AB is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Erik Sterner.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOCX 400 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sterner, E., Johansson, D.J.A. & Azar, C. Emission metrics and sea level rise. Climatic Change 127, 335–351 (2014). https://doi.org/10.1007/s10584-014-1258-1

Download citation


  • Black Carbon
  • Global Warming Potential
  • Emission Pulse
  • Adjustment Time
  • Climate Forcer