Skip to main content

Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs

Abstract

Future changes of terrestrial ecosystems due to changes in atmospheric CO2 concentration and climate are subject to a large degree of uncertainty, especially for vegetation in the Tropics. Here, we evaluate the natural vegetation response to projected future changes using an improved version of a dynamic vegetation model (CLM-CN-DV) driven with climate change projections from 19 global climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The simulated equilibrium vegetation distribution under historical climate (1981–2000) has been compared with that under the projected future climate (2081–2100) scenario for Representative Concentration Pathway 8.5 (RCP8.5) to qualitatively assess how natural potential vegetation might change in the future. With one outlier excluded, the ensemble average of vegetation changes corresponding to climates of 18 GCMs shows a poleward shift of forests in northern Eurasia and North America, which is consistent with findings from previous studies. It also shows a general “upgrade” of vegetation type in the Tropics and most of the temperate zones, in the form of deciduous trees and shrubs taking over C3 grass in Europe and broadleaf deciduous trees taking over C4 grasses in Central Africa and the Amazon. LAI and NPP are projected to increase in the high latitudes, southeastern Asia, southeastern North America, and Central Africa. This results from CO2 fertilization, enhanced water use efficiency, and in the extra-tropics warming. However, both LAI and NPP are projected to decrease in the Amazon due to drought. The competing impacts of climate change and CO2 fertilization lead to large uncertainties in the projection of future vegetation changes in the Tropics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahlström A, Schurgers G, Arneth A, Smith B (2012) Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ Res Lett 7(4):044008

    Article  Google Scholar 

  2. Alo CA, Wang G (2008) Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. J Geophys Res 113(G1):G01004

    Google Scholar 

  3. Betts R, Golding N, Gonzalez P et al (2013) Climate and land use change impacts on global terrestrial ecosystems, fire, and river flows in the HadGEM2-ES Earth System Model using the Representative Concentration Pathways. Biogeosci Discuss 10(4):6171–6223

    Article  Google Scholar 

  4. Bonan GB, Levis S (2006) Evaluating aspects of the community land and atmosphere model (CLM3 and CAM3) using a Dynamic Global Vegetation Model. J Clim 19(11):2290–2301

    Article  Google Scholar 

  5. Bonan GB, Lawrence PJ, Oleson KW et al (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res: Biogeosci (2005–2012) 116 (G2)

  6. Bousquet P, Peylin P, Ciais P, Le Quéré C, Friedlingstein P, Tans PP (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290(5495):1342–1346

    Article  Google Scholar 

  7. Cerling TE, Harris JM, MacFadden BJ et al (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389(6647):153–158

    Article  Google Scholar 

  8. Cox PM (2001) Description of the TRIFFID dynamic global vegetation model. Technical Note 24, Hadley Centre, United Kingdom Meteorological Office, Bracknell, UK

  9. Cox PM, Betts RA, Jones CD et al (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  Google Scholar 

  10. Cramer W, Bondeau A, Woodward FI et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7(4):357–373

    Article  Google Scholar 

  11. Dufresne JL, Fairhead L, Le Treut H et al (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys Res Lett 29(10):1405

    Article  Google Scholar 

  12. Fatichi S, Leuzinger S, Körner C (2014) Moving beyond photosynthesis: from carbon source to sink‐driven vegetation modeling. New Phytol 201(4):1086–1095

    Article  Google Scholar 

  13. Fisher R, McDowell N, Purves D et al (2010) Assessing uncertainties in a second‐generation dynamic vegetation model caused by ecological scale limitations. New Phytol 187(3):666–681

    Article  Google Scholar 

  14. Foley JA, Prentice IC, Ramankutty N et al (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob Biogeochem Cycles 10(4):603–628

    Article  Google Scholar 

  15. Friedlingstein P, Bopp L, Ciais P et al (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28(8):1543–1546

    Article  Google Scholar 

  16. Friedlingstein P, Cox P, Betts R et al (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(14):3337–3353

    Article  Google Scholar 

  17. Fung I, Rayner P, Friedlingstein P, Sahagian D (2000) Full-form earth system models: coupled carbon-climate interaction experiment (the flying leap). IGBP Glob Chang Newsl 41:7–8

    Google Scholar 

  18. Gotangco Castillo CK, Levis S, Thornton P (2012) Evaluation of the new CNDV option of the Community Land Model: effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability. J Clim 25(11):3702–3714

    Article  Google Scholar 

  19. Gough CM, Vogel CS, Schmid HP, Curtis PS (2008) Controls on annual forest carbon storage: lessons from the past and predictions for the future. Bioscience 58(7):609–622

    Article  Google Scholar 

  20. Haxeltine A, Prentice IC (1996) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob Biogeochem Cycles 10(4):693–709

    Article  Google Scholar 

  21. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176):289–292

    Article  Google Scholar 

  22. Jiang D, Zhang Y, Lang X (2011) Vegetation feedback under future global warming. Theor Appl Climatol 106(1–2):211–227

    Article  Google Scholar 

  23. Krinner G, Viovy N, De Noblet-Ducoudr N, Al E (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19:GB1015. doi:10.1029/2003GB002199

    Article  Google Scholar 

  24. Kucharik CJ, Foley JA, Delire C (2000) Testing the performance of a Dynamic Global Ecosystem Model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14(3):795–825

    Article  Google Scholar 

  25. Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J Geophys Res 112:G01023

    Google Scholar 

  26. Levis S (2010) Modeling vegetation and land use in models of the Earth System. Wiley Interdiscip Rev Clim Chang 1(6):840–856. doi:10.1002/wcc.83

    Article  Google Scholar 

  27. Levis S, Bonan GB, Vertenstein M et al (2004) The community land model’s dynamic global vegetation model (CLM-DGVM): technical description and user’s guide

  28. Levis S, Bonan GB, Kluzek E et al (2012) Interactive crop management in the Community Earth System Model (CESM1): seasonal influences on land–atmosphere fluxes. J Clim 25(14):4839–4859. doi:10.1175/jcli-d-11-00446.1

    Article  Google Scholar 

  29. Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86(7):1687–1695

    Article  Google Scholar 

  30. Lucht W, Prentice IC, Myneni RB et al (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296(5573):1687–1689

    Article  Google Scholar 

  31. Lucht W, Schaphoff S, Erbrecht T, Heyder U, Cramer W (2006) Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manag 1(1):6

    Article  Google Scholar 

  32. Matthews HD, Weaver AJ, Meissner KJ (2005) Terrestrial carbon cycle dynamics under recent and future climate change. J Clim 18(10):1609–1628

    Article  Google Scholar 

  33. Meehl GA, Covey C, Taylor KE et al (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394. doi:10.1175/bams-88-9-1383

    Article  Google Scholar 

  34. Moorcroft P, Hurtt G, Pacala SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 71(4):557–586

    Article  Google Scholar 

  35. Myneni RB, Yang W, Nemani RR et al (2007) Large seasonal swings in leaf area of Amazon rainforests. PNAS 104(12):4820–4823

    Article  Google Scholar 

  36. Neilson RP (1995) A model for predicting continental-scale vegetation distribution and water balance. Ecol Appl 5:362–385

    Article  Google Scholar 

  37. Neilson RP, Drapek RJ (1998) Potentially complex biosphere responses to transient global warming. Glob Chang Biol 4(5):505–521

    Article  Google Scholar 

  38. Nemani RR, Keeling CD, Hashimoto H et al (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  Google Scholar 

  39. Oleson KW, Niu GY, Yang ZL et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113(G1), G01021. doi:10.1029/2007jg000563

    Google Scholar 

  40. Oleson KW, Lawrence DM, Gordon B et al (2010) Technical description of version 4.0 of the Community Land Model (CLM)

  41. Oleson KW, Lawrence DM, Gordon B et al (2013) Technical description of version 4.5 of the Community Land Model (CLM)

  42. Piao S, Fang J, Zhou L et al (2003) Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J Geophys Res 108(D14):4401. doi:10.1029/2002jd002848

    Article  Google Scholar 

  43. Piao S, Ciais P, Lomas M et al (2011) Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: a multi-model analysis. Glob Planet Chang 75(3):133–142

    Article  Google Scholar 

  44. Prentice IC, Bartlein PJ, Webb III T (1991) Vegetation and climate change in eastern North America since the last glacial maximum. Ecology: 2038–2056

  45. Qian T, Dai A, Trenberth KE, Oleson KW (2006) Simulation of global land surface conditions from 1948 to 2004. Part I: forcing data. J Hydrometeorol 7:953–975

    Article  Google Scholar 

  46. Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

    Article  Google Scholar 

  47. Salazar LF, Nobre CA (2010) Climate change and thresholds of biome shifts in Amazonia. Geophys Res Lett 37(17):L17706

    Article  Google Scholar 

  48. Sato H, Itoh A, Kohyama T (2007) SEIB–DGVM: a new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. Ecol Model 200(3):279–307

    Article  Google Scholar 

  49. Scheiter S, Langan L, Higgins SI (2013) Next‐generation dynamic global vegetation models: learning from community ecology. New Phytol 198(3):957–969

    Article  Google Scholar 

  50. Schimel DS, House J, Hibbard K et al (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems

  51. Sitch S, Smith B, Prentice IC et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  52. Sitch S, Huntingford C, Gedney N et al (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Chang Biol 14(9):2015–2039

    Article  Google Scholar 

  53. Tao F, Zhang Z (2010) Dynamic responses of terrestrial ecosystems structure and function to climate change in China. J Geophys Res: Biogeosci (2005–2012) 115 (G3)

  54. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485

    Article  Google Scholar 

  55. Thornton PE, Rosenbloom NA (2005) Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol Model 189(1):25–48

    Article  Google Scholar 

  56. Thornton P, Law B, Gholz HL et al (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113(1):185–222

    Article  Google Scholar 

  57. Walker AP et al (2014) Comprehensive ecosystem model–data synthesis using multiple data sets at two temperate forest free–air CO2 enrichment experiments: model performance at ambient CO2 concentration. J Geophys Res: Biogeosci

  58. Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci 104(14):5738–5742

    Article  Google Scholar 

  59. Woodward FI, Lomas MR (2004) Vegetation dynamics-simulating responses to climatic change. Biol Rev 79(3):643–670

    Article  Google Scholar 

  60. Xu L, Baldocchi DD, Tang J (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Glob Biogeochem Cycles 18(4):GB4002

    Article  Google Scholar 

  61. Zaehle S, Medlyn BE, De Kauwe MG et al (2014) Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free–Air CO2 Enrichment studies. New Phytol 202(3):803–822

    Article  Google Scholar 

Download references

Acknowledgments

Funding support for this study was provided by the National Science Foundation (AGS 1049017 & AGS 1063986), the National Natural Science Foundation of China (Grant No. 41205084) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We thank Gordon B. Bonan and Samuel Levis for helping with the model development. The World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, is acknowledged. We also thank the climate modeling groups listed in Table 1 of this paper for producing and making their model output available. For CMIP the US Department of Energy’s Program for Climate Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guiling Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2623 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Wang, G., Parr, D. et al. Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs. Climatic Change 127, 257–271 (2014). https://doi.org/10.1007/s10584-014-1249-2

Download citation

Keywords

  • Leaf Area Index
  • Tree Coverage
  • Vegetation Distribution
  • Equilibrium Approach
  • Dormant Season