Climatic Change

, Volume 123, Issue 2, pp 301–313 | Cite as

Detection of long-term trends in monthly hydro-climatic series of Colombia through Empirical Mode Decomposition

  • Alejandra M. Carmona
  • Germán Poveda


We test for the existence of long-term trends in 25- to 50-year long series of monthly rainfall, average river discharges, and minimum air temperatures in Colombia. The Empirical Mode Decomposition method is used as a mathematical filter to decompose a given time series into a finite number of intrinsic mode functions, assuming the coexistence of different frequency oscillatory modes in the series, and that the residual captures the likely existing long-term trends. The Mann-Kendall test for autocorrelated data is used to assess the statistical significance of the identified trends, and the Sen test is used to quantify their magnitudes. Results show that 62 % of river discharge series exhibit significant decreasing trends between 0.01-1.92 m 3 s −1 per year, which are highly consistent downstream albeit with different ratios between the trend magnitudes and mean discharges. Most minimum temperature series (87 %) exhibit increasing trends (0.01-0.08 °Cyr −1). Results for precipitation series are inconclusive owing to the mixing between increasing trends (41 %, between 0.1-7.0 mm yr −1) and decreasing trends (44 %, between 0.1-7.4 mm yr −1), with no clear-cut geographical pattern, except for the increasing trend identified along the Pacific region, consistent with the increasing trend identified in the strength of the Chocó low-level wind jet off the Pacific coast of Colombia, an important moisture source of continental precipitation. Our results contribute to discerning between signals of climate change and climate variability in tropical South America.


Empirical Mode Decomposition Long term trends Climate change Climate variability Colombia 



We gratefully thank IDEAM for providing hydro-climatic data. We thank NASA for allowing us access to the DataDemon software. The work by A. M. Carmona is supported through a scholarship from COLCIENCIAS. The authors would also like to thank the Editor and Reviewers whose feedback and valuable observations helped us improve the final manuscript.


  1. Amador JA (2009) The intra-Americas sea low-level jet: overview and future research. Ann N Y Acad Sci 1146:153–188. doi: 10.1196/annals.1446.012 CrossRefGoogle Scholar
  2. Ceballos JL, Euscátegui C, Ramírez J, Caon M, Huggel C, Haeberli W, Machguth H (2006) Fast shrinkage of tropical glaciers in Colombia. Ann Glacio 43(1):194–201CrossRefGoogle Scholar
  3. Betancur J (2007) Approaches to the regularization of informal settlements: the case of primed in Medellín, Colombia. Glob Urban Development Magazine 3(1)Google Scholar
  4. Biasutti M (2013) Climate change: future rise in rain inequality. Nat Geosci 6:337–338CrossRefGoogle Scholar
  5. Cantor DC (2011) Evaluation and analysis of spatio-temporal long-term trends in Colombia’s hydroclimatology, (in Spanish). Master’s Thesis, Universidad Nacional de Colombia, MedellínGoogle Scholar
  6. Carmona AM, Poveda G (2012) Application of Hilbert-Huang transform to detect hydroclimatic variability modes in Colombia, (in Spanish). DYNA 79(175):72–80Google Scholar
  7. Eslava JA (1993) Climatology and climatic diversity of Colombia, (in Spanish). Rev Acad Colomb Ciencias Exactas Fsicas y Nat 18(71):507–538Google Scholar
  8. Hamed KH, Rao AR (1998) A modified mann-kendall trend test for autocorrelated data. J Hydrol 204:182–196CrossRefGoogle Scholar
  9. Hastenrath S (1991) Climate dynamics of the tropics, vol 486. Kluwer, BostonCrossRefGoogle Scholar
  10. Hense A, Krahe P, Flohn H (1988) Recent fluctuations of tropospheric temperature and water vapor content in the tropics. Meteorol Atmos Phys 38:215–227CrossRefGoogle Scholar
  11. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc R Soc Lond Ser A 454:903–993CrossRefGoogle Scholar
  12. Huang NE, Wu Z (2008) A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev Geophys 46Google Scholar
  13. Huang P, Xie S, Hu K, Huang G, Huang R (2013) Patterns of the seasonal response of tropical rainfall to global warming. Nature Geosc 6:357–361CrossRefGoogle Scholar
  14. Hurtado AF (2009) Estimation of historical monthly precipitation fields in Colombia (in Spanish). Master’s Thesis, Universidad Nacional de Colombia, MedellínGoogle Scholar
  15. Hurtado AF, Poveda G (2009) Linear and global space-time dependence and Taylor hypotheses for rainfall in the tropical Andes. J Geophys Res 114:20Google Scholar
  16. IDEAM (2000) Colombian glaciers, expression of global climate change (in Spanish). Bogota, pp 19Google Scholar
  17. Jones PD, Groisman PYa, Coughlan M, Plummer N, Wang W-C, Karl TR (1990) Assessment of urbanization effects in time series of surface air temperature over land. Nature 347:169–172CrossRefGoogle Scholar
  18. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77(3):437–471CrossRefGoogle Scholar
  19. León GE, Zea JA, Eslava JA (2000) General circulation and the intertropical convergence zone in Colombia, (in Spanish). Rev Meteorol Colombiana 1:31–38Google Scholar
  20. Martínez MT (1993) Influence on weather patterns of major synoptic scale systems in Colombia, (in Spanish). Atmósfera 16:1–10Google Scholar
  21. Mejía JF, Mesa OJ, Poveda G, Vélez JI, Hoyos CD, Mantilla R, Barco J, Cuartas A, Montoya M, Botero B (1999) Spatial distribution, annual and semi-annual cycles of precipitation in Colombia, (in Spanish). DYNA 127:7–26Google Scholar
  22. Mesa OJ, Poveda G, Carvajal LF (1997) Introduction to Colombia’s climate (in Spanish). Universidad Nacional de Colombia Press, Bogotá, pp 390Google Scholar
  23. Moghtaderi A, Flandrin P, Borgnat P (2013) Trend ltering via empirical mode decompositions. Comput Stat Data Anal 58:114126Google Scholar
  24. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  25. Ochoa A, Poveda G (2008) Spatial distribution of climate change signals in Colombia, (in Spanish). XXIII Congreso Latinoamericano de Hidráulica, Cartagena de IndiasGoogle Scholar
  26. Oster R (1979) Precipitation in Colombia, (in Spanish). Rev Colombia Geográfica 6Google Scholar
  27. Pabón JD (2003) Global climate change and its manifestation in Colombia, (in Spanish). Cuadernos de Geografía XII(1–2):111–119Google Scholar
  28. Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large scale oceanic-atmospheric phenomena. J Climate 10:2690–2702CrossRefGoogle Scholar
  29. Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on earth): enhanced ocean-atmosphere-land interaction by a low-level jet. Geophys Res Lett 27:1675–1678CrossRefGoogle Scholar
  30. Poveda G, Jaramillo A, Gil MM, Quiceno N, Mantilla R (2001) Seasonality in ENSO related precipitation, river discharges, soil moisture, and vegetation index (NDVI) in Colombia. Wat Resour Res 37(8):2169–2178CrossRefGoogle Scholar
  31. Poveda G, Rave CC, Mantilla R (2001) Trends in the probability distribution function of monthly rainfall and river discharges series in Antioquia, Colombia, (in Spanish). Rev Meteorol Colombiana 3:53–60Google Scholar
  32. Poveda G, Vélez JI, Mesa OJ, Hoyos CD, Mejía JF, Barco J, Correa PL (2002) Influence of macroclimatic phenomena on the annual cycle of Colombian hydrology: linear and nonlinear dependence and probabilistic percentiles, (in Spanish). Rev Meteorol Colombiana 6:121–130Google Scholar
  33. Poveda G, Mesa O, Agudelo P, Álvarez JF, Arias P, Moreno H, Salazar LF, Toro V, Vieira S (2005) The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon Weather Rev 133:228–240CrossRefGoogle Scholar
  34. Poveda G, Waylen PR, Pulwarty R (2006) Modern climate variability in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234:3–27CrossRefGoogle Scholar
  35. Poveda G, Pineda K (2009) Reassessment of Colombia’s tropical glaciers retreat rates: are they bound to disappear during the 2010 2020 decade?. Adv Geosc 22:107–116CrossRefGoogle Scholar
  36. Poveda G, Alvarez DM, Rueda OA (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dynam 36(11–12):2233–2249CrossRefGoogle Scholar
  37. Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Wat Resour Res 50:1–21. doi: 10.1002/2013WR014087 CrossRefGoogle Scholar
  38. Quintana-Gómez RA (1999) Trends of maximum and minimum temperatures in northern South America. J Clim 12:2104–2112CrossRefGoogle Scholar
  39. Rabatel A, Francou B, Soruco A, Gómez J, Cáceres B, Ceballos JL, Basantes R, et al (2012) Review article of the current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere Discuss 6(4)Google Scholar
  40. Rao AR, Hsu EC (2008) Hilbert-Huang transform analysis of hydrological and environmental time series. Wat. Sci. and Tech. Library. Springer, p 60Google Scholar
  41. Sakamoto MS, Ambrizzi T, Poveda G (2011) Moisture sources life cycle of convective systems over western Colombia. In: Advances in Meteorology, 2011, pp 11Google Scholar
  42. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. Amer Stat Assoc J 63(324):1379–1389CrossRefGoogle Scholar
  43. Smith RA, Poveda G, Mesa OJ, Pérez CA, Ruiz CD (1996) Searching for signals of climate change in Colombia (in Spanish). IV Congreso Colombiano de Meteorología, Sociedad Colombiana de Meteorología, BogotáGoogle Scholar
  44. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Chang 59:75–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Geosciences and EnvironmentUniversidad Nacional de Colombia, Sede MedellínMedellínColombia
  2. 2.Department of Geosciences and EnvironmentUniversidad Nacional de Colombia, Sede MedellínMedellínColombia

Personalised recommendations