Advertisement

Climatic Change

, Volume 122, Issue 1–2, pp 271–282 | Cite as

A framework for testing the ability of models to project climate change and its impacts

  • J. C. Refsgaard
  • H. Madsen
  • V. Andréassian
  • K. Arnbjerg-Nielsen
  • T. A. Davidson
  • M. Drews
  • D. P. Hamilton
  • E. Jeppesen
  • E. Kjellström
  • J. E. Olesen
  • T. O. Sonnenborg
  • D. Trolle
  • P. Willems
  • J. H. Christensen
Article

Abstract

Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data in order to build further confidence in model projections.

Keywords

Regional Climate Model Climate Change Impact Validation Test Model Projection Ensemble Modelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The present study was funded by a grant from the Danish Council for Strategic Research for the project Centre for Regional Change in the Earth System (CRES—www.cres-centre.dk) under contract no: DSF-EnMi 09-066868.

References

  1. Bates BC, Kundzewicz ZW, Wu S, Paulikof JF (eds) (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, GenevaGoogle Scholar
  2. Boberg F, Christensen JH (2012) Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat Clim Chang 2:433–436CrossRefGoogle Scholar
  3. Bommer JJ, Scherbaum F (2008) The use and misuse of logic trees in probabilistic seismic hazards analysis. Earthquake Spectra 24(4):997–1099, Earthquake Engineering Research InstituteCrossRefGoogle Scholar
  4. Challinor AJ, Ewert F, Arnold S, Simelton E, Fraser E (2009) Crops and climate change: progress, trends and challenges in simulating impacts and informing adaptation. J Exp Bot 60:2775–2789CrossRefGoogle Scholar
  5. Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44(2–3):179–194CrossRefGoogle Scholar
  6. Coron L, Andréassian V, Perrin C, Lerat J, Vaxe J, Bourqui M, Hendrickx (2012) Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. Water Resour Res 48, W05552Google Scholar
  7. Eitzinger J, Thaler S, Schmid E, Strauss F, Ferrise R, Moriondo M, Bindi M, Palosuo T, Rötter R, Kersebaum C, Olesen JE, Patil RH, Saylan L, Caldag B, Caylak O (2012) Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. J Agric Sci (in press)Google Scholar
  8. Elsgaard L, Børgesen CD, Olesen JE, Siebert S, Ewert F, Peltonen-Sainio P, Rötter RP, Skjelvåg AO (2012) Shifts in comparative advantages for maize, oat, and wheat cropping under climate change in Europe. Food Addit Contam 29:1514–1526CrossRefGoogle Scholar
  9. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113Google Scholar
  10. Jensen HS, Andersen FØ (1992) Importance of temperature, nitrate and pH for phosphorus from aerobic sediments of four shallow, eutrophic lakes. Limnol Oceanogr 37:577–589CrossRefGoogle Scholar
  11. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5(7):365–374CrossRefGoogle Scholar
  12. Jørgensen SE (1995) State of the art of ecological modelling in limnology. Ecol Model 78:101–115CrossRefGoogle Scholar
  13. Karlsson IB, Sonnenborg TO, Jensen KH, Refsgaard JC (2013) Evaluating the influence of long term historical climate change on catchment hydrology—using drought and flood indices. Hydrol Earth Syst Sci Discuss 10:2373–2428CrossRefGoogle Scholar
  14. Klemes V (1986) Operational testing of hydrological simulation models. Hydrol Sci J 31:13–24CrossRefGoogle Scholar
  15. Liboriussen L, Lauridsen TL, Søndergaard M, Landkildehus F, Larsen SE, Jeppesen E (2011) Effects of warming and nutrients on sediment community respiration in shallow lakes: an outdoor mesocosm experiment. Freshw Biol 56(3):437–447CrossRefGoogle Scholar
  16. Madsen H (2000) Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. J Hydrol 235:276–288CrossRefGoogle Scholar
  17. Meerhoff M, Teixeira-de Mello F, Kruk C, Alonso C, González-Bergonzoni I, Pacheco JP, Lacerot G, Arim M, Beklioğlu M, Bruce S, Goyenola G, Iglesias C, Mazzeo N, Kosten S, Jeppesen E (2012) Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Adv Ecol Res 46:259–349CrossRefGoogle Scholar
  18. Murphy JM, Booth BBB, Collins M, Harris GR, Sexton DMH et al (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Phil Trans R Soc A Math Phys Eng Sci 365:1993–2028CrossRefGoogle Scholar
  19. Olsen J, Anderson NJ, Knudsen MF (2012) Variability of the North Atlantic Oscillation over the past 5,200 years. Nat Geosci 5:808–812CrossRefGoogle Scholar
  20. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation and confirmation of numerical models in the earth sciences. Science 264:641–646CrossRefGoogle Scholar
  21. Palosuo T, Kersebaum KC, Angulo C, Hlavinka P, Moriondo M, Olesen JE, Patil R, Ruget F, Rumbaur C, Takáč J, Trnka M, Bindi M, Caldag B, Ewert F, Ferrise R, Mirschel W, Saylan L, Šiška B, Rötter R (2011) Simulation of winter wheat yield and its variability in different climates of Europe. A comparison of eight crop growth models. Eur J Agron 35:103–114CrossRefGoogle Scholar
  22. Popper KR (1959) The logic of scientific discovery. Hutchingson & Co, LondonGoogle Scholar
  23. Refsgaard JC, Henriksen HJ (2004) Modelling guidelines—terminology and guiding principles. Adv Water Resour 27(1):71–82CrossRefGoogle Scholar
  24. Refsgaard JC, Knudsen J (1996) Operational validation and intercomparison of different types of hydrological models. Water Resour Res 32(7):2189–2202CrossRefGoogle Scholar
  25. Refsgaard JC, Arnbjerg-Nielsen K, Drews M, Halsnæs K, Jeppesen E, Madsen H, Markandya A, Olesen JE, Porter JR, Christensen JH (2013) The role of uncertainty in climate change adaptation strategies—a Danish water management example. Mitig Adapt Strateg Glob Chang 18:337–359CrossRefGoogle Scholar
  26. Rötter R, Carter TR, Olesen JE, Porter JR (2011) Crop-climate models need an overhaul. Nat Clim Chang 1:175–177CrossRefGoogle Scholar
  27. Schlesinger S, Crosbie RE, Gagné RE, Innis GS, Lalwani CS, Loch J, Sylvester J, Wright RD, Kheir N, Bartos D (1979) Terminology for model credibility. SCS Technical Committee on Model Credibility. Simulation 32(3):103–104CrossRefGoogle Scholar
  28. Seibert J (2003) Reliability of model predictions outside calibration conditions. Nord Hydrol 34(5):477–492Google Scholar
  29. Singh R, Wagener T, van Werkhoven K, Mann ME, Crane R (2011) A trading-space-for-time approach to probabilistic continuous streamflow predictions in a changing climate—accounting for changing watershed behaviour. Hydrol Earth Syst Sci 15(11):3591–3601CrossRefGoogle Scholar
  30. Sunyer MA, Madsen H, Rosbjerg D, Arnbjerg-Nielsen K (2013) Regional interdependency of precipitation indices across Denmark in two ensembles of high resolution RCMs. J Clim. doi: 10.1175/JCLI-D-12-00707.1 Google Scholar
  31. Swayne D, Lam D, MacKay M, Rouse W, Schertzer W (2005) Assessment of the interaction between the Canadian Regional Climate Model and lake thermal-hydrodynamic models. Environ Model Softw 20:1505–1513CrossRefGoogle Scholar
  32. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  33. Tebaldi C, Smith R, Nychka D, Mearns L (2005) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multi-model ensembles. J Clim 18:1524–1540CrossRefGoogle Scholar
  34. Teutschbein C, Seibert J (2012) Is bias correction of Regional Climate Model (RCM) simulations possible for non-stationary conditions? Hydrol Earth Syst Sci Discuss 9:12765–12795CrossRefGoogle Scholar
  35. Trolle D, Hamilton DP, Pilditch CA, Duggan IC, Jeppesen E (2011) Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management. Environ Model Softw 26:354–370CrossRefGoogle Scholar
  36. Van Der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, ExeterGoogle Scholar
  37. Van Steenbergen N, Willems P (2012) Method for testing the accuracy of rainfall-runoff models in predicting peak flow changes due to rainfall changes, in a climate changing context. J Hydrol 414–415:425–434CrossRefGoogle Scholar
  38. Velázquez JA, Schmid J, Ricard S, Muerth MJ, Gauvin St-Denis B, Minville M, Chaumont D, Caya D, Ludwig R, Turcotte R (2012) An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources. HESSD, 9, 7441–7474Google Scholar
  39. Wagener T, Sivapalan M, Troch PA, McGlynn BL, Harman CJ, Gupta HV, Kumar P, Rao PSC, Basu NB, Wilson JS (2010) The future of hydrology: an evolving science for a changing world. Water Resour Res 46, W05301Google Scholar
  40. Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour Res 42:W02419Google Scholar
  41. Wolf J, Evans LG, Semenov MA, Eckersteen H, Iglesias A (1996) Comparison of wheat simulation models under climate change. I. Model calibration and sensitivity analyses. Clim Res 7:253–270CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. C. Refsgaard
    • 1
  • H. Madsen
    • 2
  • V. Andréassian
    • 3
  • K. Arnbjerg-Nielsen
    • 4
  • T. A. Davidson
    • 5
  • M. Drews
    • 6
  • D. P. Hamilton
    • 7
  • E. Jeppesen
    • 8
  • E. Kjellström
    • 9
  • J. E. Olesen
    • 10
  • T. O. Sonnenborg
    • 1
  • D. Trolle
    • 8
  • P. Willems
    • 11
  • J. H. Christensen
    • 12
  1. 1.Geological Survey of Denmark and Greenland (GEUS)Copenhagen KDenmark
  2. 2.DHIHørsholmDenmark
  3. 3.IRSTEAAntonyFrance
  4. 4.Technical University of DenmarkLyngbyDenmark
  5. 5.Aarhus UniversitySilkeborgDenmark
  6. 6.Technical University of DenmarkRoskildeDenmark
  7. 7.Environmental Research InstituteUniversity of WaikatoHamiltonNew Zealand
  8. 8.Department of BioscienceAarhus UniversitySilkeborgDenmark
  9. 9.Swedish Meteorological and Hydrological InstituteNorrköpingSweden
  10. 10.Aarhus UniversityTjeleDenmark
  11. 11.KU LeuvenLeuvenBelgium
  12. 12.Danish Meteorological InstituteCopenhagen ØDenmark

Personalised recommendations